Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review

被引:40
|
作者
Garoni, Carlo [1 ,2 ]
Speleers, Hendrik [3 ]
Ekstroem, Sven-Erik [4 ]
Reali, Alessandro [5 ,6 ,7 ]
Serra-Capizzano, Stefano [1 ,4 ]
Hughes, Thomas J. R. [8 ]
机构
[1] Univ Insubria, Dept Sci & High Technol, Como, Italy
[2] USI Univ, Inst Computat Sci, Lugano, Switzerland
[3] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[4] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[5] Univ Pavia, Dept Civil Engn & Architecture, Pavia, Italy
[6] CNR, Inst Appl Math & Informat Technol, Pavia, Italy
[7] Tech Univ Munich, Inst Adv Studies, Munich, Germany
[8] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
LOCALLY TOEPLITZ SEQUENCES; SPECTRAL-ANALYSIS; GLT SEQUENCES; MATRICES; APPROXIMATIONS; NURBS;
D O I
10.1007/s11831-018-9295-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an example-based exposition and review of recent advances in symbol-based spectral analysis. We consider constant- and variable-coefficient, second-order eigenvalue problems discretized through the (isogeometric) Galerkin method based on B-splines of degree p and smoothness For each discretized problem, we compute the so-called symbol, which is a function describing the asymptotic singular value and eigenvalue distribution of the associated discretization matrices. Using the symbol, we are able to formulate analytical predictions for the eigenvalue errors occurring when the exact eigenvalues are approximated by the numerical eigenvalues. In this way, we recover and extend previous analytical spectral results. We are also able to predict the existence of p-"optical", when discretizing the one-dimensional Laplacian eigenvalue problem. We provide explicit and implicit analytical expressions for these branches, and we quantify the divergence to infinity with respect to p of the largest optical branch in the case of smoothness (the case of classical finite element analysis).
引用
收藏
页码:1639 / 1690
页数:52
相关论文
共 50 条
  • [1] Symbol-Based Analysis of Finite Element and Isogeometric B-Spline Discretizations of Eigenvalue Problems: Exposition and Review
    Carlo Garoni
    Hendrik Speleers
    Sven-Erik Ekström
    Alessandro Reali
    Stefano Serra-Capizzano
    Thomas J. R. Hughes
    Archives of Computational Methods in Engineering, 2019, 26 : 1639 - 1690
  • [2] SYMBOL-BASED MULTIGRID METHODS FOR GALERKIN B-SPLINE ISOGEOMETRIC ANALYSIS
    Donatelli, Marco
    Garoni, Carlo
    Manni, Carla
    Serra-Capizzano, Stefano
    Speleers, Hendrik
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (01) : 31 - 62
  • [3] Isogeometric discretizations with generalized B-splines: Symbol-based spectral analysis
    Cardinali, Maria Lucia
    Garoni, Carlo
    Manni, Carla
    Speleers, Hendrik
    APPLIED NUMERICAL MATHEMATICS, 2021, 166 : 288 - 312
  • [4] An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations
    Simpson, R. N.
    Liu, Z.
    Vazquez, R.
    Evans, J. A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 264 - 289
  • [5] Solution of waveguide eigenvalue problems using the B-spline finite element method in polar coordinates
    Zhejiang Univ, Hangzhou, China
    Tien Tzu Hsueh Pao, 6 (66-70):
  • [6] Analysis of Elastostatic Crack Problems using B-spline Wavelet Finite Element Method
    Tanaka, Satoyuki
    Okada, Hiroshi
    Okazaiva, Shigenobit
    Fujikubo, Masahiko
    PROCEEDINGS OF THE EIGHTEENTH (2008) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 4, 2008, : 370 - +
  • [7] A MESHFREE B-SPLINE FINITE ELEMENT FORMULATION FOR UNILATERAL CONTACT PROBLEMS
    Grishin, Alex
    Shah, Jami J.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 2, PTS A AND B, 2012, : 91 - 104
  • [8] Finite element analysis for temperature field of clutches based on B-spline wavelet
    Hu, Hong-Wei
    Zhou, Xiao-Jun
    Pang, Mao
    Yang, Fu-Chun
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2009, 43 (01): : 143 - 147
  • [9] Complex wavenumber Fourier analysis of the B-spline based finite element method
    Kolman, R.
    Plesek, J.
    Okrouhlik, M.
    WAVE MOTION, 2014, 51 (02) : 348 - 359
  • [10] FINITE ELEMENT ANALYSIS USING UNIFORM B-SPLINE BASIS
    Kumar, Ashok V.
    Burla, Ravi K.
    DETC 2008: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATIONAL IN ENGINEERING CONFERENCE, VOL 3, PTS A AND B: 28TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2009, : 537 - 543