Development of microfabricated planar slow-wave structures on dielectric substrates for miniaturized millimeter-band traveling-wave tubes

被引:19
作者
Ryskin, Nikita M. [1 ,2 ]
Torgashov, Roman A. [1 ,2 ]
Starodubov, Andrey V. [1 ,2 ]
Rozhnev, Andrey G. [1 ,2 ]
Serdobintsev, Alexey A. [2 ]
Pavlov, Anton M. [2 ]
Galushka, Viktor V. [1 ,2 ]
Bessonov, Dmitry A. [3 ]
Ulisse, Giacomo [4 ]
Krozer, Viktor [4 ]
机构
[1] RAS, Kotelnikov Inst Radio Engn & Elect, Saratov Branch, 38 Zelenaya St, Saratov 410012, Russia
[2] Saratov NG Chernyshevskii State Univ, 83 Astrakhanskaya St, Saratov 410019, Russia
[3] Saratov State Tech Univ, 77 Politekh Skaya St, Saratov 410077, Russia
[4] Goethe Univ Frankfurt Main, Phys Inst, 1 Max von Lauestr St, D-60438 Frankfurt, Germany
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2021年 / 39卷 / 01期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1116/6.0000716
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the results of the design, simulation, fabrication, and cold-test measurements of millimeter-band 2D planar microstrip slow-wave structures (SWSs) on dielectric substrates. Such structures have a high slow-wave factor, which allows for low-voltage operation and reduction in the size and weight of the device. A low-cost and flexible fabrication technology based on magnetron sputtering and subsequent laser ablation has been developed and is reported in the paper. Microstrip meander-line SWS circuits at V-, W-, and D-bands have been fabricated and characterized. The fabrication of ring-bar planar SWSs by the photolithographic method is also discussed. Experimental measurement of S-parameters of the fabricated structures reveals good transmission properties. Return loss (S11) does not exceed -10dB and attenuation is about 2dB/cm in the V-band, 10dB/cm in the W-band, and 8.5dB/cm in the D-band.
引用
收藏
页数:10
相关论文
共 29 条
[11]   Demonstration of a High Power, Wideband 220-GHz Traveling Wave Amplifier Fabricated by UV-LIGA [J].
Joye, Colin D. ;
Cook, Alan M. ;
Calame, Jeffrey P. ;
Abe, David K. ;
Vlasov, Alexander N. ;
Chernyavskiy, Igor A. ;
Nguyen, Khanh T. ;
Wright, Edward L. ;
Pershing, Dean E. ;
Kimura, Takuji ;
Hyttinen, Mark ;
Levush, Baruch .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (06) :1672-1678
[12]   Terahertz Conductivity of Copper Surfaces [J].
Kirley, M. P. ;
Booske, John H. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2015, 5 (06) :1012-1020
[13]   Microfabrication of diamond-based slow-wave circuits for mm-wave and THz vacuum electronic sources [J].
Lueck, M. R. ;
Malta, D. M. ;
Gilchrist, K. H. ;
Kory, C. L. ;
Mearini, G. T. ;
Dayton, J. A. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (06)
[14]  
Madou M.J., 2011, Manufacturing Techniques for Microfabrication and Nanotechnology, DOI DOI 10.1201/9781439895306
[15]   Short-pulse laser ablation of solid targets [J].
Momma, C ;
Chichkov, BN ;
Nolte, S ;
vonAlvensleben, F ;
Tunnermann, A ;
Welling, H ;
Wellegehausen, B .
OPTICS COMMUNICATIONS, 1996, 129 (1-2) :134-142
[16]  
Potter B.R., 1973, INT ELECT DEVICES M, V521
[17]  
Ryskin N.M., 2020, 33 INT VAC NAN C LYO, DOI [10.1109/IVNC49440.2020.9203487, DOI 10.1109/IVNC49440.2020.9203487]
[18]   Planar Microstrip Slow-Wave Structure for Low-Voltage V-Band Traveling-Wave Tube With a Sheet Electron Beam [J].
Ryskin, Nikita M. ;
Rozhnev, Andrey G. ;
Starodubov, Andrey V. ;
Serdobintsev, Alexey A. ;
Pavlov, Anton M. ;
Benedik, Andrey I. ;
Torgashov, Roman A. ;
Torgashov, Gennadiy V. ;
Sinitsyn, Nikolay I. .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (05) :757-760
[19]  
Srivastava V., 2008, J PHYS C SER, V114, DOI [10.1088/1742-6596/114/1/012015, DOI 10.1088/1742-6596/114/1/012015]
[20]  
Starodubov AV, 2018, PR ELECTROMAGN RES S, P926, DOI 10.23919/PIERS.2018.8597833