Development of microfabricated planar slow-wave structures on dielectric substrates for miniaturized millimeter-band traveling-wave tubes

被引:19
作者
Ryskin, Nikita M. [1 ,2 ]
Torgashov, Roman A. [1 ,2 ]
Starodubov, Andrey V. [1 ,2 ]
Rozhnev, Andrey G. [1 ,2 ]
Serdobintsev, Alexey A. [2 ]
Pavlov, Anton M. [2 ]
Galushka, Viktor V. [1 ,2 ]
Bessonov, Dmitry A. [3 ]
Ulisse, Giacomo [4 ]
Krozer, Viktor [4 ]
机构
[1] RAS, Kotelnikov Inst Radio Engn & Elect, Saratov Branch, 38 Zelenaya St, Saratov 410012, Russia
[2] Saratov NG Chernyshevskii State Univ, 83 Astrakhanskaya St, Saratov 410019, Russia
[3] Saratov State Tech Univ, 77 Politekh Skaya St, Saratov 410077, Russia
[4] Goethe Univ Frankfurt Main, Phys Inst, 1 Max von Lauestr St, D-60438 Frankfurt, Germany
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2021年 / 39卷 / 01期
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1116/6.0000716
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the results of the design, simulation, fabrication, and cold-test measurements of millimeter-band 2D planar microstrip slow-wave structures (SWSs) on dielectric substrates. Such structures have a high slow-wave factor, which allows for low-voltage operation and reduction in the size and weight of the device. A low-cost and flexible fabrication technology based on magnetron sputtering and subsequent laser ablation has been developed and is reported in the paper. Microstrip meander-line SWS circuits at V-, W-, and D-bands have been fabricated and characterized. The fabrication of ring-bar planar SWSs by the photolithographic method is also discussed. Experimental measurement of S-parameters of the fabricated structures reveals good transmission properties. Return loss (S11) does not exceed -10dB and attenuation is about 2dB/cm in the V-band, 10dB/cm in the W-band, and 8.5dB/cm in the D-band.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
André F, 2020, IEEE T ELECTRON DEV, V67, P2919, DOI 10.1109/TED.2020.2993243
[2]  
[Anonymous], 2020, Comsol multiphysics, V5.6
[3]   Planar V-band Slow-Wave Structures for Low-Voltage Tubes with Sheet Electron Beam [J].
Benedik, A., I ;
Rozhnev, A. G. ;
Ryskin, N. M. ;
Sinitsyn, N., I ;
Torgashov, G., V ;
Torgashov, R. A. .
2017 EIGHTEENTH INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2017,
[4]   Vacuum Electronic High Power Terahertz Sources [J].
Booske, John H. ;
Dobbs, Richard J. ;
Joye, Colin D. ;
Kory, Carol L. ;
Neil, George R. ;
Park, Gun-Sik ;
Park, Jaehun ;
Temkin, Richard J. .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2011, 1 (01) :54-75
[5]   W-Band and D-Band Traveling-Wave Tube Circuits Fabricated by 3D Printing [J].
Cook, Alan M. ;
Joye, Colin D. ;
Calame, Jeffrey P. .
IEEE ACCESS, 2019, 7 :72561-72566
[6]   Development of a 100-W 200-GHz High Bandwidth mm-Wave Amplifier [J].
Field, Mark ;
Kimura, Takuji ;
Atkinson, John ;
Gamzina, Diana ;
Luhmann, Neville C., Jr. ;
Stockwell, Brad ;
Grant, Thomas J. ;
Griffith, Zachary ;
Borwick, Robert ;
Hillman, Christopher ;
Brar, Berinder ;
Reed, Thomas ;
Rodwell, Mark ;
Shin, Young-Min ;
Barnett, Larry R. ;
Baig, Anisullah ;
Popovic, Branko ;
Domier, Calvin ;
Barchfield, Robert ;
Zhao, Jinfeng ;
Higgins, John Aiden ;
Goren, Yehuda .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (06) :2122-2128
[7]  
Galdetskiy A, 2017, IEEE INT VAC ELECT C
[8]   Nano-CNC Machining of Sub-THz Vacuum Electron Devices [J].
Gamzina, Diana ;
Himes, Logan G. ;
Barchfeld, Robert ;
Zheng, Yuan ;
Popovic, Branko K. ;
Paoloni, Claudio ;
Choi, EunMi ;
Luhmann, Neville C., Jr. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (10) :4067-4073
[9]  
Grigoriev A.D., 2018, SPRINGER SERIES ADV, V61, DOI [10.1007/978-3-319-68891-6, DOI 10.1007/978-3-319-68891-6]
[10]   Design and Cold Test of Dual Beam Azimuthal Supported Angular Log-Periodic Strip-Line Slow Wave Structure [J].
He, Tenglong ;
Li, Xinyi ;
Wang, Zhanliang ;
Wang, Shaomeng ;
Lu, Zhigang ;
Gong, Huarong ;
Duan, Zhaoyun ;
Feng, Jinjun ;
Gong, Yubin .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2020, 41 (07) :785-795