NMR visibility of deuterium-labeled liver glycogen in vivo

被引:30
作者
De Feyter, Henk M. [1 ]
Thomas, Monique A. [1 ]
Behar, Kevin L. [2 ]
de Graaf, Robin A. [1 ]
机构
[1] Yale Univ, Sch Med, Magnet Resonance Res Ctr, Dept Radiol & Biomed Imaging, 300 Cedar St, New Haven, CT 06520 USA
[2] Yale Univ, Sch Med, Dept Psychiat, Magnet Resonance Res Ctr, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
deuterium; DMI; glycogen; NUCLEAR-MAGNETIC-RESONANCE; RELAXATION; METABOLISM; TIMES;
D O I
10.1002/mrm.28717
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Deuterium metabolic imaging (DMI) combined with [6,6'-H-2(2)]-glucose has the potential to detect glycogen synthesis in the liver. However, the similar chemical shifts of [6,6'-H-2(2)]-glucose and [6,6'-H-2(2)]-glycogen in the H-2 NMR spectrum make unambiguous detection and separation difficult in vivo, in contrast to comparable approaches using C-13 MRS. Here the NMR visibility of H-2-labeled glycogen is investigated to better understand its potential contribution to the observed signal in liver following administration of [6,6'-H-2(2)]-glucose. Methods: Mice were provided drinking water containing H-2-labeled glucose. High-resolution NMR analyses was performed of isolated liver glycogen in solution, before and after the addition of the glucose-releasing enzyme amyloglucosidase. Results: H-2-labeled glycogen was barely detectable in solution using H-2 NMR because of the very short T-2 (<2 ms) of H-2-labeled glycogen, giving a spectral line width that is more than five times as broad as that of C-13-labeled glycogen (T-2 = similar to 10 ms). Conclusion: H-2-labeled glycogen is not detectable with 2H MRS(I) under in vivo conditions, leaving C-13 MRS as the preferred technique for in vivo detection of glycogen.
引用
收藏
页码:62 / 68
页数:7
相关论文
共 21 条
[1]  
ALGER JR, 1981, SCIENCE, V214, P660, DOI 10.1126/science.7292005
[2]   A MULTIPLE-FREQUENCY COIL WITH A HIGHLY UNIFORM B1 FIELD [J].
BOLINGER, L ;
PRAMMER, MG ;
LEIGH, JS .
JOURNAL OF MAGNETIC RESONANCE, 1989, 81 (01) :162-166
[3]   Direct determination of NMR correlation times from spin-lattice and spin-spin relaxation times [J].
Carper, WR ;
Keller, CE .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (18) :3246-3250
[4]   PROTON NMR OBSERVATION OF GLYCOGEN IN-VIVO [J].
CHEN, W ;
AVISON, MJ ;
BLOCH, G ;
SHULMAN, RG .
MAGNETIC RESONANCE IN MEDICINE, 1994, 31 (05) :576-579
[5]   Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo [J].
De Feyter, Henk M. ;
Behar, Kevin L. ;
Corbin, Zachary A. ;
Fulbright, Robert K. ;
Brown, Peter B. ;
McIntyre, Scott ;
Nixon, Terence W. ;
Rothman, Douglas L. ;
de Graaf, Robin A. .
SCIENCE ADVANCES, 2018, 4 (08)
[6]  
de Graaf RA., 2021, MAGN RESON MED, P1
[7]   VALIDATION OF C-13 NMR MEASUREMENTS OF LIVER-GLYCOGEN IN-VIVO [J].
GRUETTER, R ;
MAGNUSSON, I ;
ROTHMAN, DL ;
AVISON, MJ ;
SHULMAN, RG ;
SHULMAN, GI .
MAGNETIC RESONANCE IN MEDICINE, 1994, 31 (06) :583-588
[8]   SOLUTION DEUTERIUM NMR QUADRUPOLAR RELAXATION STUDY OF HEME MOBILITY IN MYOGLOBIN [J].
JOHNSON, RD ;
LAMAR, GN ;
SMITH, KM ;
PARISH, DW ;
LANGRY, KC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (02) :481-485
[9]   Measuring Tumor Glycolytic Flux in Vivo by Using Fast Deuterium MRI [J].
Kreis, Felix ;
Wright, Alan J. ;
Hesse, Friederike ;
Fala, Maria ;
Hu, De-en ;
Brindle, Kevin M. .
RADIOLOGY, 2020, 294 (02) :289-296
[10]   Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy [J].
Lu, Ming ;
Zhu, Xiao-Hong ;
Zhang, Yi ;
Mateescu, Gheorghe ;
Chen, Wei .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2017, 37 (11) :3518-3530