Bidirectional 3D Quasi-Recurrent Neural Network for Hyperspectral Image Super-Resolution

被引:61
|
作者
Fu, Ying [1 ]
Liang, Zhiyuan [1 ]
You, Shaodi [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing Lab Intelligent Informat Technol, Beijing 100081, Peoples R China
[2] Univ Amsterdam, Inst Informat, Comp Vis Res Grp, NL-1000 Amsterdam, Netherlands
基金
中国国家自然科学基金;
关键词
Superresolution; Three-dimensional displays; Correlation; Spatial resolution; Deep learning; Training; Convolution; Bidirectional 3D quasi-recurrent neural network; global correlation along spectra; hyperspectral image super-resolution; structural spatial-spectral correlation; RECONSTRUCTION;
D O I
10.1109/JSTARS.2021.3057936
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral imaging is unable to acquire images with high resolution in both spatial and spectral dimensions yet, due to physical hardware limitations. It can only produce low spatial resolution images in most cases and thus hyperspectral image (HSI) spatial super-resolution is important. Recently, deep learning-based methods for HSI spatial super-resolution have been actively exploited. However, existing methods do not focus on structural spatial-spectral correlation and global correlation along spectra, which cannot fully exploit useful information for super-resolution. Also, some of the methods are straightforward extension of RGB super-resolution methods, which have fixed number of spectral channels and cannot be generally applied to hyperspectral images whose number of channels varies. Furthermore, unlike RGB images, existing HSI datasets are small and limit the performance of learning-based methods. In this article, we design a bidirectional 3D quasi-recurrent neural network for HSI super-resolution with arbitrary number of bands. Specifically, we introduce a core unit that contains a 3D convolutional module and a bidirectional quasi-recurrent pooling module to effectively extract structural spatial-spectral correlation and global correlation along spectra, respectively. By combining domain knowledge of HSI with a novel pretraining strategy, our method can be well generalized to remote sensing HSI datasets with limited number of training data. Extensive evaluations and comparisons on HSI super-resolution demonstrate improvements over state-of-the-art methods, in terms of both restoration accuracy and visual quality.
引用
收藏
页码:2674 / 2688
页数:15
相关论文
共 50 条
  • [31] RGB-Induced Feature Modulation Network for Hyperspectral Image Super-Resolution
    Li, Qiang
    Gong, Maoguo
    Yuan, Yuan
    Wang, Qi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [32] A CNN-Transformer Embedded Unfolding Network for Hyperspectral Image Super-Resolution
    Tang, Yao
    Li, Jie
    Yue, Linwei
    Liu, Xinxin
    Li, Yajie
    Xiao, Yi
    Yuan, Qiangqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [33] Spectral Correlation-Based Fusion Network for Hyperspectral Image Super-Resolution
    Zhu, Qiqi
    Zhang, Meilin
    Chen, Yuling
    Zheng, Guizhou
    Luo, Jiancheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63 : 1 - 1
  • [34] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution
    Liu, Denghong
    Li, Jie
    Yuan, Qiangqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7711 - 7725
  • [35] Lightweight bidirectional feedback network for image super-resolution
    Wang, Beibei
    Yan, Binyu
    Liu, Changjun
    Hwangbo, Ryul
    Jeon, Gwanggil
    Yang, Xiaomin
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 102
  • [36] Iterative Network for Image Super-Resolution
    Liu, Yuqing
    Wang, Shiqi
    Zhang, Jian
    Wang, Shanshe
    Ma, Siwei
    Gao, Wen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2259 - 2272
  • [37] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [38] Synthetic Data Pretraining for Hyperspectral Image Super-Resolution
    Aiello, Emanuele
    Agarla, Mirko
    Valsesia, Diego
    Napoletano, Paolo
    Bianchi, Tiziano
    Magli, Enrico
    Schettini, Raimondo
    IEEE ACCESS, 2024, 12 : 65024 - 65031
  • [39] SINGLE IMAGE SUPER-RESOLUTION USING A NON-LOCAL 3D CONVOLUTIONAL NEURAL NETWORK
    Xiong, Zhuang
    Tao, Xiaoming
    Zhao, Nan
    Lin, Baihong
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 31 - 35
  • [40] 3D dense convolutional neural network for fast and accurate single MR image super-resolution
    Wang, Lulu
    Du, Jinglong
    Gholipour, Ali
    Zhu, Huazheng
    He, Zhongshi
    Jia, Yuanyuan
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 93