DATA AUGMENTATION FOR LOW RESOURCE SENTIMENT ANALYSIS USING GENERATIVE ADVERSARIAL NETWORKS

被引:0
|
作者
Gupta, Rahul [1 ]
机构
[1] Amazon Com, Seattle, WA 98109 USA
关键词
Generative Adversarial Networks; sentiment analysis;
D O I
10.1109/icassp.2019.8682544
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sentiment analysis is a task that may suffer from a lack of data in certain cases, as the datasets are often generated and annotated by humans. In cases where data is inadequate for training discriminative models, generate models may aid training via data augmentation. Generative Adversarial Networks (GANs) are one such model that has advanced the state of the art in several tasks, including as image and text generation. In this paper, I train GAN models on low resource datasets, then use them for the purpose of data augmentation towards improving sentiment classifier generalization. Given the constraints of limited data, I explore various techniques to train the GAN models. I also present an analysis of the quality of generated GAN data as more training data for the GAN is made available. In this analysis, the generated data is evaluated as a test set (against a model trained on real data points) as well as a training set to train classification models. Finally, I also conduct a visual analysis by projecting the generated and the real data into a two-dimensional space using the t-Distributed Stochastic Neighbor Embedding (t-SNE) method.
引用
收藏
页码:7380 / 7384
页数:5
相关论文
共 50 条
  • [21] Data Augmentation using Conditional Generative Adversarial Networks for Robust Speech Recognition
    Sheng, Peiyao
    Yang, Zhuolin
    Hu, Hu
    Tan, Tian
    Qian, Yanmin
    2018 11TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2018, : 121 - 125
  • [22] Data augmentation using generative adversarial networks for images and biomarkers in medicine and neuroscience
    Yahaya, Maizan Syamimi Meor
    Teo, Jason
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [23] Numeric Data Augmentation Using Structural Constraint Wasserstein Generative Adversarial Networks
    Wang, Wei
    Wang, Chuang
    Cui, Tao
    Gong, Ruohan
    Tang, Zuqi
    Zhou, Xiangchun
    Li, Yue
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [24] Indoor Localization Using Data Augmentation via Selective Generative Adversarial Networks
    Njima, Wafa
    Chafii, Marwa
    Chorti, Arsenia
    Shubair, Raed M.
    Poor, H. Vincent
    IEEE ACCESS, 2021, 9 : 98337 - 98347
  • [25] Medical Image Synthesis for Data Augmentation and Anonymization Using Generative Adversarial Networks
    Shin, Hoo-Chang
    Tenenholtz, Neil A.
    Rogers, Jameson K.
    Schwarz, Christopher G.
    Senjem, Matthew L.
    Gunter, Jeffrey L.
    Andriole, Katherine P.
    Michalski, Mark
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, 2018, 11037 : 1 - 11
  • [26] Generative Adversarial Networks as an Advanced Data Augmentation Technique for MRI Data
    Konidaris, Filippos
    Tagaris, Thanos
    Sdraka, Maria
    Stafylopatis, Andreas
    PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2019, : 48 - 59
  • [27] Cancer classification with data augmentation based on generative adversarial networks
    Wei, Kaimin
    Li, Tianqi
    Huang, Feiran
    Chen, Jinpeng
    He, Zefan
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
  • [28] A deep data augmentation framework based on generative adversarial networks
    Wang, Qiping
    Luo, Ling
    Xie, Haoran
    Rao, Yanghui
    Lau, Raymond Y. K.
    Zhang, Detian
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42871 - 42887
  • [29] Explainable evaluation of generative adversarial networks for wearables data augmentation
    Narteni, Sara
    Orani, Vanessa
    Ferrari, Enrico
    Verda, Damiano
    Cambiaso, Enrico
    Mongelli, Maurizio
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [30] A deep data augmentation framework based on generative adversarial networks
    Qiping Wang
    Ling Luo
    Haoran Xie
    Yanghui Rao
    Raymond Y.K. Lau
    Detian Zhang
    Multimedia Tools and Applications, 2022, 81 : 42871 - 42887