Discrete-Time Super-Twisting Fractional-Order Differentiator With Implicit Euler Method

被引:16
作者
Sharma, Rahul Kumar [1 ]
Xiong, Xiaogang [2 ]
Kamal, Shyam [1 ]
Ghosh, Sandip [1 ]
机构
[1] Banaras Hindu Univ, Dept Elect Engn, Indian Inst Technol, Varanasi 221005, Uttar Pradesh, India
[2] Harbin Inst Technol Shenzhen, Sch Mech Engn & Automat, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
Circuits and systems; Estimation; Robustness; Sliding mode control; Differential equations; Discrete-time systems; Convergence; Differentiators; fractional-order systems; super-twisting algorithm (STA); fractional Adams-Moulton (FAM) method; implicit euler discretization; chattering suppression; DESIGN;
D O I
10.1109/TCSII.2020.3027733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief proposes a discrete-time fractional-order differentiator based on the super-twisting algorithm for second-order systems. The differentiator achieves higher performance with respect to the classical ones of integer order in terms of convergence time and robustness. It relaxes the classical boundedness condition required to be satisfied by the second-order derivatives of the functions in conventional differentiators. The numerical integration is performed by an implicit Euler discretization technique based on the Fractional Adams-Moulton method, which significantly suppresses the chattering. The significance of the proposed differentiator is demonstrated through a simulation example, comparing with the classical ones.
引用
收藏
页码:1238 / 1242
页数:5
相关论文
共 50 条
  • [31] Lyapunov Stability Analysis of the Implicit Discrete-Time Twisting Control Algorithm
    Huber, Olivier
    Acary, Vincent
    Brogliato, Bernard
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (06) : 2619 - 2626
  • [32] Semi-Implicit Euler Digital Implementation of Conditioned Super-Twisting Algorithm With Actuation Saturation
    Yang, Xiansheng
    Xiong, Xiaogang
    Zou, Zhenyu
    Lou, Yunjiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (08) : 8388 - 8397
  • [33] Robust Model Predictive Control for Discrete-time Fractional-order Systems
    Sopasakis, Pantelis
    Ntouskas, Sotirios
    Sarimveis, Haralambos
    2015 23RD MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2015, : 384 - 389
  • [34] Bounded control of PMLSM servo system based on fractional order barrier function adaptive super-twisting approach
    Zhao, Xinyu
    Wang, Limei
    CONTROL ENGINEERING PRACTICE, 2025, 154
  • [35] Super-Twisting Algorithm-Based Fractional-Order Sliding-Mode Control of Nonlinear Systems With Mismatched Uncertainties
    Zhou, Minghao
    Su, Hongyu
    Feng, Yong
    Wei, Kemeng
    Xu, Wei
    Cheng, Jiamin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (08) : 9510 - 9519
  • [36] A Novel Fault-Tolerant Super-Twisting Control Technique for Chaos Stabilization in Fractional-Order Arch MEMS Resonators
    Alsaade, Fawaz W.
    Al-zahrani, Mohammed S.
    MATHEMATICS, 2023, 11 (10)
  • [37] A new synchronization result for fractional-order discrete-time chaotic systems via bandlimited channels
    Hamiche, Hamid
    Megherbi, Ouerdia
    Kemih, Karim
    Kara, Redouane
    Ouslimani, Achour
    PHYSICA SCRIPTA, 2024, 99 (04)
  • [38] STABILITY ANALYSIS OF INTERCONNECTED DISCRETE-TIME FRACTIONAL-ORDER LTI STATE-SPACE SYSTEMS
    Grzymkowski, Lukasz
    Trofimowicz, Damian
    Stefanski, Tomasz P.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2020, 30 (04) : 649 - 658
  • [39] Novel Method to Estimate the Reaching Time of the Super-Twisting Algorithm
    Seeber, Richard
    Horn, Martin
    Fridman, Leonid
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (12) : 4301 - 4308
  • [40] Implicit and explicit discrete-time realizations of the robust exact filtering differentiator
    Carvajal-Rubio, J. E.
    Defoort, M.
    Sanchez-Torres, J. D.
    Djemai, M.
    Loukianov, A. G.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (08): : 3951 - 3978