On Hermite-Hadamard Type Integral Inequalities for n-times Differentiable m- and (α, m)-Logarithmically Convex Functions

被引:11
作者
Latif, M. A. [1 ]
Dragomir, S. S. [1 ,2 ]
Momoniat, E. [1 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, Private Bag 3, ZA-2050 Johannesburg, Johannesburg, South Africa
[2] Victoria Univ, Sch Engn & Sci, POB 14428, Melbourne, MC 8001, Australia
关键词
Hermite-Hadamard's inequality; m-logarithmically convex function; (alpha; m)-logarithmically convex function; Holder inequality; REAL NUMBERS; MAPPINGS;
D O I
10.2298/FIL1611101L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish Hermite-Hadamard type inequalities for functions whose nth derivatives are m- and (alpha, m)-logarithmically convex functions. From our results, several results for classical trapezoidal and classical midpoint inequalities are obtained in terms second derivatives that are m- and (alpha, m)-logarithmically convex functions as special cases.
引用
收藏
页码:3101 / 3114
页数:14
相关论文
共 27 条
[1]  
[Anonymous], AEQUATIONES IN PRESS
[2]  
[Anonymous], 2012, ANALYSIS-UK
[3]  
[Anonymous], ANALYSIS MUNICH
[4]  
[Anonymous], 1993, Stud. U. Babes-Bol. Mat.
[5]  
[Anonymous], ACTA U M BELII M
[6]  
[Anonymous], MATH SLOVAC IN PRESS
[7]   Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions [J].
Bai, Rui-Fang ;
Qi, Feng ;
Xi, Bo-Yan .
FILOMAT, 2013, 27 (01) :1-7
[8]  
Bakula M.K., 2008, J. Ineq. Pure Appl. Math, V9, P96
[9]   CONVEX FUNCTIONS [J].
BECKENBACH, EF .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (05) :439-460
[10]   Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions [J].
Deng, Jianhua ;
Wang, JinRong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,