On Hermite-Hadamard Type Integral Inequalities for n-times Differentiable m- and (α, m)-Logarithmically Convex Functions

被引:11
作者
Latif, M. A. [1 ]
Dragomir, S. S. [1 ,2 ]
Momoniat, E. [1 ]
机构
[1] Univ Witwatersrand, Sch Computat & Appl Math, Private Bag 3, ZA-2050 Johannesburg, Johannesburg, South Africa
[2] Victoria Univ, Sch Engn & Sci, POB 14428, Melbourne, MC 8001, Australia
关键词
Hermite-Hadamard's inequality; m-logarithmically convex function; (alpha; m)-logarithmically convex function; Holder inequality; REAL NUMBERS; MAPPINGS;
D O I
10.2298/FIL1611101L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish Hermite-Hadamard type inequalities for functions whose nth derivatives are m- and (alpha, m)-logarithmically convex functions. From our results, several results for classical trapezoidal and classical midpoint inequalities are obtained in terms second derivatives that are m- and (alpha, m)-logarithmically convex functions as special cases.
引用
收藏
页码:3101 / 3114
页数:14
相关论文
共 27 条
  • [1] [Anonymous], AEQUATIONES IN PRESS
  • [2] [Anonymous], 2012, ANALYSIS-UK
  • [3] [Anonymous], ANALYSIS MUNICH
  • [4] [Anonymous], 1993, Stud. U. Babes-Bol. Mat.
  • [5] [Anonymous], ACTA U M BELII M
  • [6] [Anonymous], MATH SLOVAC IN PRESS
  • [7] Hermite-Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions
    Bai, Rui-Fang
    Qi, Feng
    Xi, Bo-Yan
    [J]. FILOMAT, 2013, 27 (01) : 1 - 7
  • [8] Bakula M.K., 2008, J. Ineq. Pure Appl. Math, V9, P96
  • [9] CONVEX FUNCTIONS
    BECKENBACH, EF
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (05) : 439 - 460
  • [10] Fractional Hermite-Hadamard inequalities for (α, m)-logarithmically convex functions
    Deng, Jianhua
    Wang, JinRong
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,