On the complexity of the normal bases via prime Gauss period over finite fields

被引:4
作者
Liao, Qunying [1 ,2 ]
Feng, Keqin [2 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Complexity; cyclotomic number; finite field; Gauss period; normal basis;
D O I
10.1007/s11424-009-9172-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A formula on the complexity of the normal bases generated by prime Gauss period over finite fields is presented in terms of cyclotomic numbers. Then, the authors determine explicitly the complexity of such normal bases and their dual bases in several cases where the related cyclotomic numbers have been calculated. Particularly, the authors A-nd several series of such normal bases with low complexity.
引用
收藏
页码:395 / 406
页数:12
相关论文
共 12 条
[1]  
Agnew G. B., 1991, Journal of Cryptology, V3, P63, DOI 10.1007/BF00196789
[2]   AN IMPLEMENTATION OF ELLIPTIC CURVE CRYPTOSYSTEMS OVER F(2)155 [J].
AGNEW, GB ;
MULLIN, RC ;
VANSTONE, SA .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1993, 11 (05) :804-813
[3]  
[Anonymous], 1998, Gauss and Jacobi Sums
[4]  
BLAKE IF, 1993, APPL FINITE FIELDS
[5]   The trace of an optimal normal element and low complexity normal bases [J].
Christopoulou, Maria ;
Garefalakis, Theo ;
Panario, Daniel ;
Thomson, David .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) :199-215
[6]   Normal bases via general Gauss periods [J].
Feisel, S ;
Von zur Gathen, J ;
Shokrollahi, MA .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :271-290
[7]  
Gao S., 1992, Designs, Codes and Cryptography, V2, P315, DOI 10.1007/BF00125200
[8]   Abelian groups, Gauss periods, and normal bases [J].
Gao, SH .
FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (01) :149-164
[9]  
Jungnickel D., 1993, Finite Fields: Structure and Arithmetics
[10]  
MULLIN RC, 1988, DISCRETE APPLIED MAT, V22, P149