Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein:: A common step in genetic recombination

被引:112
作者
Kantake, N
Madiraju, MVVM
Sugiyama, T
Kowalczykowski, C [1 ]
机构
[1] Univ Calif Davis, Sect Microbiol, Davis, CA 95616 USA
[2] Univ Calif Davis, Sect Mol & Cellular Biol, Davis, CA 95616 USA
[3] Univ Calif Davis, Genet Grad Grp, Davis, CA 95616 USA
[4] Univ Texas Hlth Ctr, Dept Microbiol, Tyler, TX 75710 USA
关键词
D O I
10.1073/pnas.252633399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present biochemical evidence for the functional similarity of Escherichia coli RecO protein and bacteriophage T4 UvsY protein to eukaryotic Rad52 protein. Although Rad52 protein is conserved in eukaryotes, no sequence homologue has been found in prokaryotes or archeabacteria. Rad52 protein has two unique activities: facilitation of replication protein-A (RPA) displacement by Rad51 protein and annealing of RPA-single-stranded DNA (ssDNA) complexes. Both activities require species-specific interaction between Rad52 protein and RPA. Both RecO and UvsY proteins also possess the former property with regard to their cognate ssDNA-binding protein. Here, we report that RecO protein anneals ssDNA that is complexed with only its cognate ssDNA-binding protein, suggesting the involvement of species-specific interactions. Optimal activity for RecO protein occurs after formation of a 1:1 complex with SSB protein. RecR protein, which is known to stimulate RecO protein to facilitate SSB protein displacement by RecA protein, inhibits annealing by RecO protein, suggesting that RecR protein may regulate the choice between the DNA strand invasion versus annealing pathways. In addition, we show that UvsY protein anneals ssDNA; furthermore, ssDNA, which is complexed only with its cognate ssDNA-binding protein, is annealed in the presence of UvsY protein. These results indicate that RecO and possibly UvsY proteins are functional counterparts of Rad52 protein. Based on the conservation of these functions, we propose a modified double-strand break repair model that includes DNA annealing as an important intermediate step.
引用
收藏
页码:15327 / 15332
页数:6
相关论文
共 44 条
[1]   CHARACTERIZATION OF DNA-BINDING AND STRAND-EXCHANGE STIMULATION PROPERTIES OF Y-RPA, A YEAST SINGLE-STRAND-DNA-BINDING PROTEIN [J].
ALANI, E ;
THRESHER, R ;
GRIFFITH, JD ;
KOLODNER, RD .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 227 (01) :54-71
[2]   T4 BACTERIOPHAGE GENE-32 - A STRUCTURAL PROTEIN IN REPLICATION AND RECOMBINATION OF DNA [J].
ALBERTS, BM ;
FREY, L .
NATURE, 1970, 227 (5265) :1313-&
[3]   Differential timing and control of noncrossover and crossover recombination during meiosis [J].
Allers, T ;
Lichten, M .
CELL, 2001, 106 (01) :47-57
[4]   Intermediates of yeast meiotic recombination contain heteroduplex DNA [J].
Allers, T ;
Lichten, M .
MOLECULAR CELL, 2001, 8 (01) :225-231
[5]  
Bianco P. R., 1998, FRONT BIOSCI, V3, pD570, DOI DOI 10.2741/A304
[6]  
BITTNER M, 1979, J BIOL CHEM, V254, P9565
[7]   RADIATION-SENSITIVE MUTANTS OF T4D .2. T4Y - GENETIC CHARACTERIZATION [J].
BOYLE, JM .
MUTATION RESEARCH, 1969, 8 (03) :441-&
[8]   ON THE MECHANISM OF RENATURATION OF COMPLEMENTARY-DNA STRANDS BY THE RECA PROTEIN OF ESCHERICHIA-COLI [J].
BRYANT, FR ;
LEHMAN, IR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (02) :297-301
[9]  
CHOW SA, 1988, J BIOL CHEM, V263, P200
[10]   2 ALTERNATIVE PATHWAYS OF DOUBLE-STRAND BREAK REPAIR THAT ARE KINETICALLY SEPARABLE AND INDEPENDENTLY MODULATED [J].
FISHMANLOBELL, J ;
RUDIN, N ;
HABER, JE .
MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (03) :1292-1303