Magnitude and Holmes-Thompson intrinsic volumes of convex bodies

被引:0
作者
Meckes, Mark W. [1 ]
机构
[1] Case Western Reserve Univ, Dept Math Appl Math & Stat, 10900 Euclid Ave, Cleveland, OH 44106 USA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2022年
基金
欧洲研究理事会;
关键词
magnitude; Holmes-Thompson intrinsic volumes; Mahler's conjecture; Sudakov minoration; INTEGRAL GEOMETRY; PRODUCT; ZONOIDS;
D O I
10.4153/S0008439522000728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Magnitude is a numerical invariant of compact metric spaces, originally inspired by category theory and now known to be related to myriad other geometric quantities. Generalizing earlier results in l(1)(n) and Euclidean space, we prove an upper bound for the magnitude of a convex body in a hypermetric normed space in terms of its Holmes-Thompson intrinsic volumes. As applications of this bound, we give short new proofs of Mahler's conjecture in the case of a zonoid and Sudakov's minoration inequality.
引用
收藏
页码:854 / 867
页数:14
相关论文
共 42 条
  • [1] Further inequalities for the (generalized) Wills functional
    Alonso-Gutierrez, David
    Hernandez Cifre, Maria A.
    Yepes Nicolas, Jesus
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (03)
  • [2] ON THE MAGNITUDES OF COMPACT SETS IN EUCLIDEAN SPACES
    Antonio Barcelo, Juan
    Carbery, Anthony
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2018, 140 (02) : 449 - 494
  • [3] Artstein-Avidan S., 2015, ASYMPTOTIC GEOMETR 1
  • [4] Valuations with Crofton formula and Finsler geometry
    Bernig, Andreas
    [J]. ADVANCES IN MATHEMATICS, 2007, 210 (02) : 733 - 753
  • [5] GAUSSIAN PROCESSES AND MIXED VOLUMES
    CHEVET, S
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 36 (01): : 47 - 65
  • [6] Deza MM, 1997, GEOMETRY CUTS METRIC
  • [7] The Weyl principle on the Finsler frontier
    Faifman, Dmitry
    Wannerer, Thomas
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (02):
  • [8] Gimperlein H., 2023, P AM MATH SOC, V151, P897
  • [9] Gimperlein H, 2024, Arxiv, DOI arXiv:2201.11363
  • [10] Gimperlein H, 2021, AM J MATH, V143, P939