Weak and strong convergence Bregman extragradient schemes for solving pseudo-monotone and non-Lipschitz variational inequalities

被引:20
作者
Jolaoso, Lateef Olakunle [1 ]
Aphane, Maggie [1 ]
机构
[1] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, POB 94 Medunsa, ZA-0204 Pretoria, South Africa
关键词
Pseudo-monotone; Extragradient method; Line search; Variational inequalities; Bregman distance; Numerical result; FIXED-POINT; ALGORITHM;
D O I
10.1186/s13660-020-02462-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce Bregman subgradient extragradient methods for solving variational inequalities with a pseudo-monotone operator which are not necessarily Lipschitz continuous. Our algorithms are constructed such that the stepsizes are determined by an Armijo line search technique, which improves the convergence of the algorithms without prior knowledge of any Lipschitz constant. We prove weak and strong convergence results for approximating solutions of the variational inequalities in real reflexive Banach spaces. Finally, we provide some numerical examples to illustrate the performance of our algorithms to related algorithms in the literature.
引用
收藏
页数:25
相关论文
共 46 条
[1]   Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems [J].
Alakoya, T. O. ;
Jolaoso, L. O. ;
Mewomo, O. T. .
OPTIMIZATION, 2021, 70 (03) :545-574
[2]  
Alber Y.I., 1996, LECT NOTES PURE APPL, V178, P15
[3]  
[Anonymous], 1981, Numerical Analysis of Variational Inequalities
[4]  
Antipin A. S., 1976, Ekonom. i Mat. Metody, V12, P1164
[5]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[6]  
Beck A., 2017, MOS SIAM SERIES OPTI
[7]  
Bregman L.M., 1967, USSR Computational Mathematics and Mathematical Physics, V7, P200, DOI 10.1016/0041-5553(67)90040-7
[8]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[9]   AN ITERATIVE ROW-ACTION METHOD FOR INTERVAL CONVEX-PROGRAMMING [J].
CENSOR, Y ;
LENT, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1981, 34 (03) :321-353
[10]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845