Quantum doubles in monoidal categories

被引:3
作者
Chen, HX [1 ]
机构
[1] Yangzhou Univ, Dept Math, Yangzhou 225002, Peoples R China
[2] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1080/00927870008826961
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a Hopf algebra in a rigid symmetric monoidal category C then the evaluation map tau is a convolution-invertible skew pairing. In the previous paper, we constructed a Hopf algebra D(H) = H x(tau) H-*cop in C. In this paper, we first show that D(H) is' a quasitriangular Hopf algebra in C. Next, let A be an ordinary triangular finite-dimensional Hopf algebra. Then one can form quasitriangular Hopf algebras B(H, H) and B(H, D(H)) tin a rigid braided monoidal category) by Majid's method associated to the ordinary Hopf algebra maps id : H --> H and i(H) : H --> D(H), where D(H) is the Drinfel'd quantum double. We show that D(B(H, H)) and B(H, D(H)) are isomorphic Hopf algebras in the braided monoidal category.
引用
收藏
页码:2303 / 2328
页数:26
相关论文
共 14 条
[1]  
DOI Y, 1994, COMMUN ALGEBRA, V22, P5715, DOI 10.1080/00927879408825158
[2]  
DRINFELD VG, 1986, P ICM BERKELEY, V1, P789
[3]  
Kassel Ch., 1995, QUANTUM GROUPS
[4]   TANGLES AND HOPF-ALGEBRAS IN BRAIDED CATEGORIES [J].
LYUBASHENKO, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (03) :245-278
[5]   MODULAR TRANSFORMATIONS FOR TENSOR CATEGORIES [J].
LYUBASHENKO, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (03) :279-327
[6]   EXAMPLES OF BRAIDED GROUPS AND BRAIDED MATRICES [J].
MAJID, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3246-3253
[7]  
MAJID S, 1994, LECT NOTES PURE APPL, V158, P55
[8]   BRAIDED GROUPS [J].
MAJID, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1993, 86 (02) :187-221
[9]   TRANSMUTATION THEORY AND RANK FOR QUANTUM BRAIDED GROUPS [J].
MAJID, S .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1993, 113 :45-70
[10]   BRAIDED GROUPS AND ALGEBRAIC QUANTUM-FIELD THEORIES [J].
MAJID, S .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (03) :167-175