Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations

被引:121
作者
Huang, C. C. [2 ]
Chatterji, A. [2 ,3 ]
Sutmann, G. [4 ]
Gompper, G. [1 ,2 ]
Winkler, R. G. [1 ]
机构
[1] KFA Julich GmbH, Forschungszentrum, Inst Adv Simulat, D-2425 Julich, Germany
[2] KFA Julich GmbH, Forschungszentrum, Inst Festkorperforsch, D-52425 Julich, Germany
[3] IISER, Pune 411021, Maharashtra, India
[4] KFA Julich GmbH, Forschungszentrum, Julich Supercomp Ctr, Inst Adv Simulat, D-52425 Julich, Germany
关键词
Isothermal simulations; Canonical ensemble; Velocity scaling; Mesoscale hydrodynamics simulations; Multiparticle collision dynamics; Non-equilibrium simulations; Thermalization; Stochastic process; MOLECULAR-DYNAMICS; CONSTANT-PRESSURE; HYDRODYNAMICS; FLOW;
D O I
10.1016/j.jcp.2009.09.024
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A local Maxwellian thermostat for the multiparticle collision dynamics algorithm is proposed. The algorithm is based on a scaling of the relative velocities of the fluid particles within a collision cell. The scaling factor is determined from the distribution of the kinetic energy within such a cell. Thereby the algorithm ensures that the distribution of the relative velocities is given by the Maxwell-Boltzmann distribution. The algorithm is particularly useful for non-equilibrium systems, where temperature has to be controlled locally. We perform various non-equilibrium simulations for fluids in shear and pressure-driven flow, which confirm the validity of the proposed simulation scheme. In addition, we determine the dynamic structure factors for fluids with and without thermostat, which exhibit significant differences due to suppression of the diffusive part of the energy transport of the isothermal system. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:168 / 177
页数:10
相关论文
共 47 条
[1]   Mesoscopic solvent simulations: Multiparticle-collision dynamics of three-dimensional flows [J].
Allahyarov, E ;
Gompper, G .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036702
[2]  
Allen M. P., 2017, COMPUTER SIMULATION
[3]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[4]   Poiseuille flow to measure the viscosity of particle model fluids [J].
Backer, JA ;
Lowe, CP ;
Hoefsloot, HCJ ;
Iedema, PD .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (15)
[5]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[6]  
Berne B.J., 1976, DYNAMIC LIGHT SCATTE
[7]   CANONICAL ENSEMBLE AVERAGES FROM PSEUDOMICROCANONICAL DYNAMICS [J].
BULGAC, A ;
KUSNEZOV, D .
PHYSICAL REVIEW A, 1990, 42 (08) :5045-5048
[8]   Canonical sampling through velocity rescaling [J].
Bussi, Giovanni ;
Donadio, Davide ;
Parrinello, Michele .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[9]  
CANNAVACCIUOLO L, 2008, EPL, V83, P38007
[10]  
Evans DJ, 2007, STATISTICAL MECHANICS OF NONEQUILIBRIUM LIQUIDS, P1