The effect of mutual coupling on the performance of space-time adaptive processing (STAP) antenna arrays is investigated. A signal model that includes the effects of mutual coupling is derived and used to compute the optimum solution for the fully adaptive and a variety of partially adaptive algorithms. The simulations Indicate that if the mutual coupling is not properly accounted for there is significant degradation of the signal-to-interference-plus-noise ratio (SINR). In addition, the clutter notch is widened resulting in a larger minimum detectable velocity (MDV) of the target. When the mutual coupling is properly accounted for, the performance can be restored to the ideal level. However STAP algorithms, in general, are very sensitive to errors in the mutual coupling matrix, requiring a very complete knowledge of this matrix for good performance Of all the algorithms considered here, beam space algorithms appear to be the most robust with respect to uncertainties in the mutual coupling matrix.