An Eco-Friendly, CMOS-Compatible Transfer Process for Large-Scale CVD-Graphene

被引:22
作者
Moon, Ji-Yun [1 ,2 ]
Kim, Seung-Il [1 ,2 ]
Son, Seok-Kyun [3 ,5 ]
Kang, Seog-Gyun [4 ]
Lim, Jae-Young [4 ]
Lee, Dong Kyu [1 ,2 ]
Ahn, Byungmin [1 ,2 ]
Whang, Dongmok [4 ]
Yu, Hak Ki [1 ,2 ]
Lee, Jae-Hyun [1 ,2 ]
机构
[1] Ajou Univ, Dept Energy Syst Res, Suwon 16499, Gyeonggi Do, South Korea
[2] Ajou Univ, Dept Mat Sci & Engn, Suwon 16499, Gyeonggi Do, South Korea
[3] Univ Manchester, Natl Graphene Inst, Manchester M13 9PL, Lancs, England
[4] Sungkyunkwan Univ SKKU, Sch Adv Mat Sci & Engn, SKKU Adv Inst Nanotechnol, Suwon 16419, Gyeonggi Do, South Korea
[5] Mokpo Natl Univ, Dept Phys, Muan Gun 58554, Jeollanam Do, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
chemical vapor deposition; graphene; MoO3; transfer; water soluble; CHEMICAL-VAPOR-DEPOSITION; ALPHA-MOO3; THIN-FILMS; STABILITY; ROADMAP; GROWTH;
D O I
10.1002/admi.201900084
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Since the first realization of graphene synthesis through the chemical vapor deposition (CVD) method in 2009, CVD-graphene is regarded as a key material in the future electronics industry, and one that requires high standard characteristics. However, because graphene itself is not a semiconductor, therefore it does not have a bandgap, a promising application is considered to integrate its use with semiconductors, rather than completely replace Si or Ge. Although numerous methods for a clean and uniform graphene transfer process are developed, graphene growth and transfer methods that are applicable to current mainstream Si-based complementary metal-oxide-semiconductor (CMOS) manufacturing processes are not yet introduced. This study implements an eco-friendly and CMOS-compatible graphene transfer process through water-soluble inorganic MoO3 film as a supporting layer. Since the monolayer graphene is grown on hydrogen-terminated semiconductor Ge surface, the MoO3 thin film coated graphene is easily delaminated from the Ge substrate. The separated graphene could be transferred to arbitrary substrate without a chemical wet etching process, and the remaining Ge substrate could be employed for about 50 times multiple reuse for the growth of graphene, without degradation of the crystallinity of the graphene.
引用
收藏
页数:7
相关论文
共 53 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[3]   Formation and control of wrinkles in graphene by the wedging transfer method [J].
Calado, V. E. ;
Schneider, G. F. ;
Theulings, A. M. M. G. ;
Dekker, C. ;
Vandersypen, L. M. K. .
APPLIED PHYSICS LETTERS, 2012, 101 (10)
[4]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[5]   Stability of graphene doping with MoO3 and I2 [J].
D'Arsie, Lorenzo ;
Esconjauregui, Santiago ;
Weatherup, Robert ;
Guo, Yuzheng ;
Bhardwaj, Sunil ;
Centeno, Alba ;
Zurutuza, Amaia ;
Cepek, Cinzia ;
Robertson, John .
APPLIED PHYSICS LETTERS, 2014, 105 (10)
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]   Combination of characterization techniques for atomic layer deposition MoO3 coatings: From the amorphous to the orthorhombic α-MoO3 crystalline phase [J].
Diskus, Madeleine ;
Nilsen, Ola ;
Fjellvag, Helmer ;
Diplas, Spyros ;
Beato, Pablo ;
Harvey, Clare ;
van Schrojenstein Lantman, Evelien ;
Weckhuysen, Bert M. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01)
[8]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[9]   Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems [J].
Ferrari, Andrea C. ;
Bonaccorso, Francesco ;
Fal'ko, Vladimir ;
Novoselov, Konstantin S. ;
Roche, Stephan ;
Boggild, Peter ;
Borini, Stefano ;
Koppens, Frank H. L. ;
Palermo, Vincenzo ;
Pugno, Nicola ;
Garrido, Jose A. ;
Sordan, Roman ;
Bianco, Alberto ;
Ballerini, Laura ;
Prato, Maurizio ;
Lidorikis, Elefterios ;
Kivioja, Jani ;
Marinelli, Claudio ;
Ryhaenen, Tapani ;
Morpurgo, Alberto ;
Coleman, Jonathan N. ;
Nicolosi, Valeria ;
Colombo, Luigi ;
Fert, Albert ;
Garcia-Hernandez, Mar ;
Bachtold, Adrian ;
Schneider, Gregory F. ;
Guinea, Francisco ;
Dekker, Cees ;
Barbone, Matteo ;
Sun, Zhipei ;
Galiotis, Costas ;
Grigorenko, Alexander N. ;
Konstantatos, Gerasimos ;
Kis, Andras ;
Katsnelson, Mikhail ;
Vandersypen, Lieven ;
Loiseau, Annick ;
Morandi, Vittorio ;
Neumaier, Daniel ;
Treossi, Emanuele ;
Pellegrini, Vittorio ;
Polini, Marco ;
Tredicucci, Alessandro ;
Williams, Gareth M. ;
Hong, Byung Hee ;
Ahn, Jong-Hyun ;
Kim, Jong Min ;
Zirath, Herbert ;
van Wees, Bart J. .
NANOSCALE, 2015, 7 (11) :4598-4810
[10]   CHARACTERIZATION AND STABILITY OF ELECTROCHROMIC MOO3 THIN-FILMS PREPARED BY ELECTRODEPOSITION [J].
GUERFI, A ;
PAYNTER, RW ;
DAO, LH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (10) :3457-3464