Application of artificial neural network and global optimization techniques for high throughput modeling of the crystal structure of stannites and kesterites

被引:5
作者
Matyszczak, Grzegorz [1 ]
Zberecki, Krzysztof [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa St 75, PL-00662 Warsaw, Poland
关键词
artificial neural networks; density functional theory; kesterite; stannite; Uspex;
D O I
10.1002/jcc.26493
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study aims to apply artificial neural networks for the prediction of the lattice parameters of materials with stannite- and kesterite-type structure, and to compare the results of predictions with that obtained in the calculations exploiting the density functional theory. Crystallographic data for 49 compounds with stannite-type structure and for four compounds with the kesterite-type structure are found and, based on it, crystal structures are calculated using the density functional theory (DFT) method in a two-step relaxation procedure for all compounds. An multilayer Perceptron is constructed, which then is trained on gathered crystallographic data. Values predicted by a neural network (lattice parameters) are compared with experimental data and with results of DFT calculations. Moreover, a global optimization method (the Uspex code) is used to find potentially novel crystal structures for investigated chemical compositions. The results are discussed in the term of advantages and disadvantages of each method.
引用
收藏
页码:740 / 745
页数:6
相关论文
共 21 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4 [J].
Bosson, C. J. ;
Birch, M. T. ;
Halliday, D. P. ;
Knight, K. S. ;
Gibbs, A. S. ;
Hatton, P. D. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (32) :16672-16680
[3]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[4]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[5]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[6]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[7]   AB-INITIO MOLECULAR-DYNAMICS FOR OPEN-SHELL TRANSITION-METALS [J].
KRESSE, G ;
HAFNER, J .
PHYSICAL REVIEW B, 1993, 48 (17) :13115-13118
[8]   Examination of the influence of different variables on prediction of unit cell parameters in perovskites using counter-propagation artificial neural networks [J].
Kuzmanovski, Igor ;
Dimitrovska-Lazova, Sandra ;
Aleksovska, Slobotka .
JOURNAL OF CHEMOMETRICS, 2012, 26 (01) :1-6
[9]   Mercury CSD 2.0 -: new features for the visualization and investigation of crystal structures [J].
Macrae, Clare F. ;
Bruno, Ian J. ;
Chisholm, James A. ;
Edgington, Paul R. ;
McCabe, Patrick ;
Pidcock, Elna ;
Rodriguez-Monge, Lucia ;
Taylor, Robin ;
van de Streek, Jacco ;
Wood, Peter A. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2008, 41 :466-470
[10]   Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression [J].
Majid, Abdul ;
Khan, Asifullah ;
Javed, Gibran ;
Mirza, Anwar M. .
COMPUTATIONAL MATERIALS SCIENCE, 2010, 50 (02) :363-372