Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses

被引:31
作者
Lima, N. C. [1 ,2 ,3 ]
Mishra, K. [2 ,3 ]
Mugele, F. [2 ,3 ]
机构
[1] Univ Estadual Campinas, Sch Mech Engn, Dept Mfg & Mat Engn, DEMA, Cidade Univ Zeferino Vaz Barao Geraldo, Campinas, SP, Brazil
[2] Univ Twente, IMPACT, Dept Sci & Technol, Phys Complex Fluids, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst, POB 217, NL-7500 AE Enschede, Netherlands
关键词
FLUIDIC LENS; HUMAN EYE; ELECTROHYDRODYNAMICS; SURFACES; VOLUME;
D O I
10.1364/OE.25.006700
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By means of numerical simulations, using a computational fluid dynamics software together with an optical ray tracing analysis platform, we show that we can tune various optical aberrations by electrically manipulating the shape of liquid lenses using one hundred individually addressable electrodes. To demonstrate the flexibility of our design, we define electrode patterns based on specific Zernike modes and show that aspherical, cylindrical and decentered shapes of liquid lenses can be produced. Using different voltages, we evaluate the tuning range of spherical aberration (Z11), astigmatism (Z5 and Z6) and coma (Z7), while a hydrostatic pressure is applied to control the average curvature of a microlens with a diameter of 1mm. Upon activating all electrodes simultaneously spherical aberrations of 0.15 waves at a pressure of 30Pa can be suppressed almost completely for the highest voltages applied. For astigmatic and comatic patterns, the values of Z5, Z6 and Z7 increase monotonically with the voltage reaching values up to 0.06, 0.06 and 0.2 waves, respectively. Spot diagrams, wavefront maps and modulation transfer function are reported to quantify the optical performance of each lens. Crosstalk and independence of tunability are discussed in the context of possible applications of the approach for general wavefront shaping. (C) 2017 Optical Society of America
引用
收藏
页码:6700 / 6711
页数:12
相关论文
共 26 条
[1]   Variable focal lens controlled by an external voltage: An application of electrowetting [J].
Berge, B ;
Peseux, J .
EUROPEAN PHYSICAL JOURNAL E, 2000, 3 (02) :159-163
[2]   Aspherical anamorphic lens for shaping laser diode beam [J].
Cao, Zhaolou ;
Wang, Keyi ;
Wu, Qinglin .
OPTICS COMMUNICATIONS, 2013, 305 :53-56
[3]   Adaptive optics with a magnetic deformable mirror:: applications in the human eye [J].
Fernández, Enrique J. ;
Vabre, Laurent ;
Hermann, Boris ;
Unterhuber, Angelika ;
Povazay, Boris ;
Drexler, Wolfgang .
OPTICS EXPRESS, 2006, 14 (20) :8900-8917
[4]   Shape specification for axially symmetric optical surfaces [J].
Forbes, G. W. .
OPTICS EXPRESS, 2007, 15 (08) :5218-5226
[5]   Characterization of a tunable astigmatic fluidic lens with adaptive optics correction for compact phoropter application [J].
Fuh, Yiin-Kuen ;
Huang, Chieh-Tse .
OPTICS COMMUNICATIONS, 2014, 323 :148-153
[6]   VOLUME OF FLUID (VOF) METHOD FOR THE DYNAMICS OF FREE BOUNDARIES [J].
HIRT, CW ;
NICHOLS, BD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (01) :201-225
[7]   Tubular astigmatism-tunable fluidic lens [J].
Kopp, Daniel ;
Zappe, Hans .
OPTICS LETTERS, 2016, 41 (12) :2735-2738
[8]   Aspherical lens design by using a numerical analysis [J].
Kweon, Gyeong-Il ;
Kim, Cheol-Ho .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 51 (01) :93-103
[9]   Zernike polynomials: a guide [J].
Lakshminarayanan, Vasudevan ;
Fleck, Andre .
JOURNAL OF MODERN OPTICS, 2011, 58 (07) :545-561
[10]   Tunable optofluidic devices [J].
Levy, Uriel ;
Shamai, Romi .
MICROFLUIDICS AND NANOFLUIDICS, 2008, 4 (1-2) :97-105