FGF19 in the Hindbrain Lowers Blood Glucose and Alters Excitability of Vagal Motor Neurons in Hyperglycemic Mice

被引:12
作者
Wean, Jordan B. [1 ]
Smith, Bret N. [1 ,2 ]
机构
[1] Univ Kentucky, Coll Med, Dept Physiol, Lexington, KY USA
[2] Univ Kentucky, Coll Med, Dept Neurosci, Lexington, KY USA
关键词
autonomic; diabetes; EPSC; fibroblast growth factor; hyperglycemia; vagus nerve; CENTRAL-NERVOUS-SYSTEM; BRAIN-STEM; RAPID INHIBITION; FOOD-INTAKE; NUCLEUS; RAT; COMPLEX; VAGUS; ACTIVATION; PLASTICITY;
D O I
10.1210/endocr/bqab021
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Fibroblast growth factor 19 (FGF19) is a protein hormone that produces antidiabetic effects when administered intracerebroventricularly in the forebrain. However, no studies have examined how FGF19 affects hindbrain neurons that participate directly in autonomic control of systemic glucose regulation. Within the dorsal hindbrain, parasympathetic motor neurons of the dorsal motor nucleus of the vagus (DMV) express fibroblast growth factor receptors and their activity regulates visceral homeostatic processes, including energy balance. This study tested the hypothesis that FGF19 acts in the hindbrain to alter DMV neuron excitability and lower blood glucose concentration. Fourth ventricle administration of FGF19 produced no effect on blood glucose concentration in control mice, but induced a significant, peripheral muscarinic receptor-dependent decrease in systemic hyperglycemia for up to 12 h in streptozotocin-treated mice, a model of type 1 diabetes. Patch-clamp recordings from DMV neurons in vitro revealed that FGF19 application altered synaptic and intrinsic membrane properties of DMV neurons, with the balance of FGF19 effects being significantly modified by a recent history of systemic hyperglycemia.These findings identify central parasympathetic circuitry as a novel target for FGF19 and suggest that FGF19 acting in the dorsal hindbrain can alter vagal output to produce its beneficial metabolic effects.
引用
收藏
页数:14
相关论文
共 63 条
[1]   Fundamentals of FGF19 & FGF21 Action In Vitro and In Vivo [J].
Adams, Andrew C. ;
Coskun, Tamer ;
Rovira, Armando R. Irizarry ;
Schneider, Michael A. ;
Raches, David W. ;
Micanovic, Radmila ;
Bina, Holly A. ;
Dunbar, James D. ;
Kharitonenkov, Alexei .
PLOS ONE, 2012, 7 (05)
[2]   3Hemodynamic consequences of chronic parasympathetic blockade with a peripheral muscarinic antagonist [J].
Ayer, Antoine ;
Antic, Vladan ;
Dulloo, Abdul G. ;
Van Vliet, Bruce N. ;
Montani, Jean-Pierre .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2007, 293 (02) :H1265-H1272
[3]   Enhanced NMDA Receptor-Mediated Modulation of Excitatory Neurotransmission in the Dorsal Vagal Complex of Streptozotocin-Treated, Chronically Hyperglycemic Mice [J].
Bach, Eva C. ;
Halmos, Katalin Cs. ;
Smith, Bret N. .
PLOS ONE, 2015, 10 (03)
[4]   A-type potassium channels differentially tune afferent pathways from rat solitary tract nucleus to caudal ventrolateral medulla or paraventricular hypothalamus [J].
Bailey, T. W. ;
Hermes, S. M. ;
Whittier, K. L. ;
Aicher, S. A. ;
Andresen, M. C. .
JOURNAL OF PHYSIOLOGY-LONDON, 2007, 582 (02) :613-628
[5]   Dysregulation of PI3K-Akt-mTOR pathway in brain of streptozotocin-induced type 2 diabetes mellitus in Wistar rats [J].
Bathina, Siresha ;
Das, Undurti N. .
LIPIDS IN HEALTH AND DISEASE, 2018, 17
[6]  
Belluardo N, 1997, J COMP NEUROL, V379, P226
[7]   TOPOGRAPHY OF EFFERENT VAGAL INNERVATION OF THE RAT GASTROINTESTINAL-TRACT [J].
BERTHOUD, HR ;
CARLSON, NR ;
POWLEY, TL .
AMERICAN JOURNAL OF PHYSIOLOGY, 1991, 260 (01) :R200-R207
[8]   Insulin reduces excitation in gastric-related neurons of the dorsal motor nucleus of the vagus [J].
Blake, Camille B. ;
Smith, Bret N. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2012, 303 (08) :R807-R814
[9]   FGF21 regulates metabolism and circadian behavior by acting on the nervous system [J].
Bookout, Angie L. ;
de Groot, Marleen H. M. ;
Owen, Bryn M. ;
Lee, Syann ;
Gautron, Laurent ;
Lawrence, Heather L. ;
Ding, Xunshan ;
Elmquist, Joel K. ;
Takahashi, Joseph S. ;
Mangelsdorf, David J. ;
Kliewer, Steven A. .
NATURE MEDICINE, 2013, 19 (09) :1147-1152
[10]   Diabetes induces GABA receptor plasticity in murine vagal motor neurons [J].
Boychuk, C. R. ;
Halmos, K. Cs. ;
Smith, B. N. .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 114 (01) :698-706