Potentially nilpotent and spectrally arbitrary even cycle sign patterns

被引:6
作者
Bingham, B. D.
Olesky, D. D.
van den Driessche, P.
机构
[1] Univ Victoria, Dept Comp Sci, Victoria, BC V8W 3P6, Canada
[2] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
关键词
characteristic polynomial; cycle product; digraph; nilpotent matrix; potentially nilpotent; sign pattern; spectrally arbitrary; spectrum;
D O I
10.1016/j.laa.2006.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n x n sign pattern P-n is potentially nilpotent if there is a real matrix having sign pattern P-n and characteristic polynomial x(n). A new family of sign patterns C-n with a cycle of every even length is introduced and shown to be potentially nilpotent by explicitly determining the entries of a nilpotent matrix with sign pattem Wn. These nilpotent matrices are used together with a Jacobian argument to show that C-n is spectrally arbitrary, i.e., there is a real matrix having sign pattern 'Kn and characteristic polynomial x(n) + Sigma(n)(i=1) (-1)(i) mu(i)x(n-i) for any real mu(i). Some results and a conjecture on minimality of these spectrally arbitrary sign patterus are given. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:24 / 44
页数:21
相关论文
共 8 条
[1]   Minimal spectrally arbitrary sign patterns [J].
Britz, T ;
McDonald, JJ ;
Olesky, DD ;
van den Driessche, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :257-271
[2]   Spectrally and inertially arbitrary sign patterns [J].
Cavers, MS ;
Vander Meulen, KN .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 394 :53-72
[3]   Spectrally arbitrary patterns [J].
Drew, JH ;
Johnson, CR ;
Olesky, DD ;
van den Driessche, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :121-137
[4]   Potentially nilpotent sign pattern matrices [J].
Eschenbach, CA ;
Li, ZS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 299 (1-3) :81-99
[5]  
GOULD H. W., 1972, COMBINATORIAL IDENTI
[6]   Spectrally arbitrary star sign patterns [J].
MacGillivray, G ;
Tifenbach, RM ;
van den Driessche, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 400 :99-119
[7]   On the spectra of striped sign patterns [J].
McDonald, JJ ;
Olesky, DD ;
Tsatsomeros, MJ ;
van den Driessche, P .
LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01) :39-48
[8]   Sign pattern matrices that allow a nilpotent matrix [J].
Yeh, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 53 (02) :189-196