Limit Cycle Bifurcations in Perturbations of a Reversible Quadratic System with a Non-rational First Integral

被引:1
作者
Xiong, Yanqin [1 ]
Cheng, Rong [1 ]
Li, Na [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
[2] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Hopf cyclicity; Limit cycle; Melnikov function; Piecewise quadratic polynomial system; HAMILTONIAN-SYSTEMS; HILBERT NUMBER; CENTERS; HOPF;
D O I
10.1007/s12346-020-00434-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the Hopf cyclicity of a piecewise smooth quadratic polynomial system by Melnikov function method, whose unperturbed system is a concrete reversible quadratic system with a center at the origin and with a non-rational first integral. By comparing the obtained result for the piecewise case with the result for the smooth case, it shows that the piecewise system can have at least four more limit cycles around the origin than the smooth one.
引用
收藏
页数:29
相关论文
共 32 条
[1]  
[Anonymous], 2004, J. Dynam. Differ. Equ
[2]  
[Anonymous], 2005, Qual. Theory Dyn. Syst.
[3]  
[Anonymous], 1902, Bulletins of the American Mathematical Society, DOI DOI 10.1090/S0002-9904-1902-00923-3
[4]   The pseudo-Hopf bifurcation for planar discontinuous piecewise linear differential systems [J].
Castillo, Juan ;
Llibre, Jaume ;
Verduzco, Fernando .
NONLINEAR DYNAMICS, 2017, 90 (03) :1829-1840
[5]   Limit cycles by perturbing quadratic isochronous centers inside piecewise polynomial differential systems [J].
Cen, Xiuli ;
Liu, Changjian ;
Yang, Lijun ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (12) :6083-6126
[6]   A unified proof on the weak Hilbert 16th problem for n=2 [J].
Chen, F ;
Li, CZ ;
Llibre, J ;
Zhang, ZH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) :309-342
[7]   BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES [J].
CHICONE, C ;
JACOBS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :268-326
[8]   New lower bound for the Hilbert number in piecewise quadratic differential systems [J].
da Cruz, Leonardo P. C. ;
Novaes, Douglas D. ;
Torregrosa, Joan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (07) :4170-4203
[9]   Canonical Discontinuous Planar Piecewise Linear Systems [J].
Freire, Emilio ;
Ponce, Enrique ;
Torres, Francisco .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2012, 11 (01) :181-211
[10]   PERTURBATIONS OF QUADRATIC CENTERS OF GENUS ONE [J].
Gautier, Sebastien ;
Gavrilov, Lubomir ;
Iliev, Iliya D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (02) :511-535