Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae

被引:77
作者
Trabalzini, L
Paffetti, A
Scaloni, A
Talamo, F
Ferro, E
Coratza, G
Bovalini, L
Lusini, P
Martelli, P
Santucci, A
机构
[1] Univ Siena, Dipartimento Biol Mol, I-53100 Siena, Italy
[2] CNR, Proteom & Mass Spect Lab, IABBAM, I-80147 Naples, Italy
关键词
ethanol; glucose; oenology; two-dimensional electrophoresis; yeast;
D O I
10.1042/BJ20020140
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report a study on the adaptive response of a wild-type wine Saccharomyces cerevisiae strain, isolated from natural spontaneous grape must, to mild and progressive physiological stresses due to fermentation. We observed by two-dimensional electrophoresis how the yeast proteome changes during glucose exhaustion, before the cell enters its complete stationary phase. On the basis of their identification, the proteins representing the S. cerevisiae proteomic response to fermentation stresses were divided into three classes: repressed proteins, induced proteins and autoproteolysed proteins. In an overall view, the proteome adaptation of S. cerevisiae at the time of glucose exhaustion seems to be directed mainly against the effects of ethanol, causing both hyperosmolarity and oxidative responses. Stress-induced autoproteolysis is directed mainly towards specific isoforms of glycolytic enzymes. Through the use of a wild-type S. cerevisiae strain and PMSF, a specific inhibitor of vacuolar proteinase B, we could also distinguish the specific contributions of the vacuole and the proteasome to the autoproteolytic process.
引用
收藏
页码:35 / 46
页数:12
相关论文
共 54 条
[1]   Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae [J].
Alexandre, H ;
Ansanay-Galeote, V ;
Dequin, S ;
Blondin, B .
FEBS LETTERS, 2001, 498 (01) :98-103
[2]   Glucose depletion rapidly inhibits translation initiation in yeast [J].
Ashe, MP ;
De Long, SK ;
Sachs, AB .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (03) :833-848
[3]   PROTEIN-SYNTHESIS DURING TRANSITION AND STATIONARY PHASES UNDER GLUCOSE LIMITATION IN SACCHAROMYCES-CEREVISIAE [J].
BOUCHERIE, H .
JOURNAL OF BACTERIOLOGY, 1985, 161 (01) :385-392
[4]   A stationary-phase gene in Saccharomyces cerevisiae is a member of a novel, highly conserved gene family [J].
Braun, EL ;
Fuge, EK ;
Padilla, PA ;
WernerWashburne, M .
JOURNAL OF BACTERIOLOGY, 1996, 178 (23) :6865-6872
[5]   THE CYTOPLASMIC TAIL DOMAIN OF THE VACUOLAR PROTEIN SORTING RECEPTOR VPS1OP AND A SUBSET OF VPS GENE-PRODUCTS REGULATE RECEPTOR STABILITY, FUNCTION, AND LOCALIZATION [J].
CEREGHINO, JL ;
MARCUSSON, EG ;
EMR, SD .
MOLECULAR BIOLOGY OF THE CELL, 1995, 6 (09) :1089-1102
[6]  
CHEREST H, 1992, GENETICS, V130, P51
[7]   Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase [J].
Corson, LB ;
Folmer, J ;
Strain, JJ ;
Culotta, VC ;
Cleveland, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (39) :27590-27596
[8]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79
[9]   PEPTIDE SEQUENCES THAT TARGET CYTOSOLIC PROTEINS FOR LYSOSOMAL PROTEOLYSIS [J].
DICE, JF .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (08) :305-309
[10]   Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO) [J].
Dwight, SS ;
Harris, MA ;
Dolinski, K ;
Ball, CA ;
Binkley, G ;
Christie, KR ;
Fisk, DG ;
Issel-Tarver, L ;
Schroeder, M ;
Sherlock, G ;
Sethuraman, A ;
Weng, S ;
Botstein, D ;
Cherry, JM .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :69-72