Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer

被引:86
作者
Jendoubi, Takoua [1 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
关键词
data integration; multi-omics; integration strategies; genomics; MASS-SPECTROMETRY; DATA FUSION; WEB SERVER; TRANSCRIPTOMICS; METABONOMICS; GENOMICS; SYSTEMS; SPECTROSCOPY; PROTEOMICS; PHENOTYPE;
D O I
10.3390/metabo11030184
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Metabolomics deals with multiple and complex chemical reactions within living organisms and how these are influenced by external or internal perturbations. It lies at the heart of omics profiling technologies not only as the underlying biochemical layer that reflects information expressed by the genome, the transcriptome and the proteome, but also as the closest layer to the phenome. The combination of metabolomics data with the information available from genomics, transcriptomics, and proteomics offers unprecedented possibilities to enhance current understanding of biological functions, elucidate their underlying mechanisms and uncover hidden associations between omics variables. As a result, a vast array of computational tools have been developed to assist with integrative analysis of metabolomics data with different omics. Here, we review and propose five criteria-hypothesis, data types, strategies, study design and study focus- to classify statistical multi-omics data integration approaches into state-of-the-art classes under which all existing statistical methods fall. The purpose of this review is to look at various aspects that lead the choice of the statistical integrative analysis pipeline in terms of the different classes. We will draw particular attention to metabolomics and genomics data to assist those new to this field in the choice of the integrative analysis pipeline.
引用
收藏
页数:18
相关论文
共 110 条
[1]   Integration of metabolomics, lipidomics and clinical data using a machine learning method [J].
Acharjee, Animesh ;
Ament, Zsuzsanna ;
West, James A. ;
Stanley, Elizabeth ;
Griffin, Julian L. .
BMC BIOINFORMATICS, 2016, 17
[2]  
Baum A., 2019, J. Open Source Softw, V4, P1190, DOI [DOI 10.21105/JOSS.01190, 10.21105/joss.01190]
[3]   Multifunctional proteins revealed by overlapping clustering in protein interaction network [J].
Becker, Emmanuelle ;
Robisson, Benoit ;
Chapple, Charles E. ;
Guenoche, Alain ;
Brun, Christine .
BIOINFORMATICS, 2012, 28 (01) :84-90
[4]   Combining Mass Spectrometry and NMR Improves Metabolite Detection and Annotation [J].
Bhinderwala, Fatema ;
Wase, Nishikant ;
DiRusso, Concetta ;
Powers, Robert .
JOURNAL OF PROTEOME RESEARCH, 2018, 17 (11) :4017-4022
[5]   Data integration in plant biology:: the O2PLS method for combined modeling of transcript and metabolite data [J].
Bylesjo, Max ;
Eriksson, Daniel ;
Kusano, Miyako ;
Moritz, Thomas ;
Trygg, Johan .
PLANT JOURNAL, 2007, 52 (06) :1181-1191
[6]   Prospects and challenges of multi-omics data integration in toxicology [J].
Canzler, Sebastian ;
Schor, Jana ;
Busch, Wibke ;
Schubert, Kristin ;
Rolle-Kampczyk, Ulrike E. ;
Seitz, Herve ;
Kamp, Hennicke ;
von Bergen, Martin ;
Buesen, Roland ;
Hackermueller, Joerg .
ARCHIVES OF TOXICOLOGY, 2020, 94 (02) :371-388
[7]   Transcriptomic and metabolomic data integration [J].
Cavill, Rachel ;
Jennen, Danyel ;
Kleinjans, Jos ;
Briede, Jacob Jan .
BRIEFINGS IN BIOINFORMATICS, 2016, 17 (05) :891-901
[8]   Consensus-Phenotype Integration of Transcriptomic and Metabolomic Data Implies a Role for Metabolism in the Chemosensitivity of Tumour Cells [J].
Cavill, Rachel ;
Kamburov, Atanas ;
Ellis, James K. ;
Athersuch, Toby J. ;
Blagrove, Marcus S. C. ;
Herwig, Ralf ;
Ebbels, Timothy M. D. ;
Keun, Hector C. .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (03)
[9]   Integration of Metabolomic and Other Omics Data in Population-Based Study Designs: An Epidemiological Perspective [J].
Chu, Su H. ;
Huang, Mengna ;
Kelly, Rachel S. ;
Benedetti, Elisa ;
Siddiqui, Jalal K. ;
Zeleznik, Oana A. ;
Pereira, Alexandre ;
Herrington, David ;
Wheelock, Craig E. ;
Krumsiek, Jan ;
McGeachie, Michael ;
Moore, Steven C. ;
Kraft, Peter ;
Mathe, Ewy ;
Lasky-Su, Jessica .
METABOLITES, 2019, 9 (06)
[10]   Pharmaco-metabonomic phenotyping and personalized drug treatment [J].
Clayton, TA ;
Lindon, JC ;
Cloarec, O ;
Antti, H ;
Charuel, C ;
Hanton, G ;
Provost, JP ;
Le Net, JL ;
Baker, D ;
Walley, RJ ;
Everett, JR ;
Nicholson, JK .
NATURE, 2006, 440 (7087) :1073-1077