The cover time of sparse random graphs

被引:44
作者
Cooper, Colin
Frieze, Alan [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Univ London Goldsmiths Coll, Dept Math & Comp Sci, London SW14 6NW, England
关键词
random walk; random graphs; cover time;
D O I
10.1002/rsa.20151
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the cover time of a random walk on graphs G epsilon G(n,p), when p = c log n /n, c > 1. We prove that whp, the cover time, is asymptotic to c log (c/c-1) n log n. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 10 条
[1]  
ALELIUNAS R, 1979, P 20 ANN S FDN COMP, P218, DOI DOI 10.1109/SFCS.1979.34
[2]   AN ALGORITHM FOR FINDING HAMILTON PATHS AND CYCLES IN RANDOM GRAPHS [J].
BOLLOBAS, B ;
FENNER, TI ;
FRIEZE, AM .
COMBINATORICA, 1987, 7 (04) :327-341
[3]  
Bollobas B., 2001, CAMBRIDGE STUDIES AD, V73
[4]  
BRODER A, 1989, J THEORET PROBAB, V2, P101
[5]   A TIGHT LOWER-BOUND ON THE COVER TIME FOR RANDOM-WALKS ON GRAPHS [J].
FEIGE, U .
RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (04) :433-438
[6]   A TIGHT UPPER BOUND ON THE COVER TIME FOR RANDOM-WALKS ON GRAPHS [J].
FEIGE, U .
RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (01) :51-54
[7]  
Janson S, 2000, WIL INT S D, DOI 10.1002/9781118032718
[8]  
Jerrum M., 1996, Approximation Algorithms for NP-Hard Problems, chapter The Markov Chain Monte Carlo Method: An Approach To Approximate Counting And Integration, P482
[9]   On the cover time for random walks on random graphs [J].
Jonasson, J .
COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (03) :265-279
[10]  
os P., 1959, Publ. Math, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12