Raw EPIC Data Calibration

被引:8
作者
Cede, Alexander [1 ,2 ,3 ]
Huang, Liang Kang [2 ,4 ]
McCauley, Gavin [1 ]
Herman, Jay [2 ,5 ]
Blank, Karin [2 ]
Kowalewski, Matthew [2 ]
Marshak, Alexander [2 ]
机构
[1] SciGlob Instruments & Serv LLC, Elkridge, MD 21046 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] LuftBlick, Innsbruck, Austria
[4] Sci Syst & Applicat Inc, Lanham, MD USA
[5] Joint Ctr Earth Syst Technol, Baltimore, MD USA
来源
FRONTIERS IN REMOTE SENSING | 2021年 / 2卷
关键词
Satellite remote sensing; Earth observation; Lagrange; 1; point; instrument calibration; flat field correction; stray light correction; B-BAND; ERYTHEMAL IRRADIANCE; SMOKE AEROSOLS; OXYGEN; OZONE; EARTH; EPIC/DSCOVR; RETRIEVAL; CHANNELS;
D O I
10.3389/frsen.2021.702275
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Earth Polychromatic Imaging Camera (EPIC) raw level-0 (L0) data in one channel is a 12-bit 2,048 x 2,048 pixels image array plus auxiliary data such as telemetry, temperature, etc. The EPIC L1a processor applies a series of correction steps on the L0 data to convert them into corrected count rates (level-1a or L1a data): Dark correction, Enhanced pixel detection, Read wave correction, Latency correction, Non-linearity correction, Temperature correction, Conversion to count rates, Flat fielding, and Stray light correction. L1a images should have all instrumental effects removed and only need to be multiplied by one single number for each wavelength to convert counts to radiances, which are the basis for all higher-level EPIC products, such as ozone and sulfur dioxide total column amounts, vegetation index, cloud, aerosol, ocean surface, and vegetation properties, etc. This paper gives an overview of the mathematics and the pre-launch and on-orbit calibration behind each correction step.
引用
收藏
页数:18
相关论文
共 35 条
[1]  
Bhartia P. K., 2002, OMI ALGORITHM THEORE, V2, P15
[2]   First Observations of Volcanic Eruption Clouds From the L1 Earth-Sun Lagrange Point by DSCOVR/EPIC [J].
Carn, S. A. ;
Krotkov, N. A. ;
Fisher, B. L. ;
Li, C. ;
Prata, A. J. .
GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (20) :11456-11464
[3]  
Cede A., 2011, AGU FALL M DEC 5 9 2
[4]   Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, AND CATS) Views from Space [J].
Christian, Kenneth ;
Wang, Jun ;
Ge, Cui ;
Peterson, David ;
Hyer, Edward ;
Yorks, John ;
McGill, Matthew .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (16) :10061-10071
[5]   Cloud information content in EPIC/DSCOVR's oxygen A- and B-band channels: A physics-based approach [J].
Davis, Anthony B. ;
Ferlay, Nicolas ;
Libois, Quentin ;
Marshak, Alexander ;
Yang, Yuekui ;
Min, Qilong .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2018, 220 :84-96
[6]   The Inter-Calibration of the DSCOVR EPIC Imager with Aqua-MODIS and NPP-VIIRS [J].
Doelling, David ;
Haney, Conor ;
Bhatt, Rajendra ;
Scarino, Benjamin ;
Gopalan, Arun .
REMOTE SENSING, 2019, 11 (13)
[7]   Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations [J].
Geogdzhayev, Igor V. ;
Marshak, Alexander .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (01) :359-368
[8]  
Goddard Space Flight Center, 2021, AUR OZ MON INSTR
[9]   Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for 2005-2018 estimated from OMI and EPIC observations [J].
Herman, Jay ;
Cede, Alexander ;
Huang, Liang ;
Ziemke, Jerald ;
Torres, Omar ;
Krotkov, Nickolay ;
Kowalewski, Matthew ;
Blank, Karin .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (14) :8351-8380
[10]   Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth-sun Lagrange 1 orbit [J].
Herman, Jay ;
Huang, Liang ;
McPeters, Richard ;
Ziemke, Jerry ;
Cede, Alexander ;
Blank, Karin .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (01) :177-194