Use of three-dimensional computational fluid dynamics model for a new configuration of circular primary settling tank

被引:8
作者
Griborio, A. G. [1 ]
Rodriguez, J. A. [2 ]
Enriquez, L. [2 ]
McCorquodale, J. A. [3 ]
机构
[1] Hazen & Sawyer PC, 4000 Hollywood Blvd 750N, Hollywood, FL 33021 USA
[2] Univ Valle, EIDENAR, Fac Engn, Cali, Colombia
[3] Univ New Orleans, Dept Civil Engn, New Orleans, LA 70122 USA
关键词
center well; circular primary settling tank; computational fluid dynamics; POTABLE WATER-TREATMENT; NUMERICAL-SIMULATION; WASTE-WATER; SECONDARY CLARIFIERS; SEDIMENTATION TANKS; FLOW; PERFORMANCE; CFD; FLOCCULATION; DESIGN;
D O I
10.2166/wst.2021.110
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Appropriately used, CFD models are powerful tools to design and optimize primary settling tanks (PSTs). This paper uses a Fluent-based 3D model to identify the possible causes for underperformance of the circular PSTs at the Cali WWTP, Colombia, and to propose design modifications to improve performance. A new configuration for the center well (CW) is proposed and evaluated. The influence of a rotational sludge scraper and of continuously sludge removal were considered in the numerical simulation. The new configuration included the modification of the current CW diameter and the location of a second baffle with the CW. The results suggest that the installation of the second baffle allows a more uniform flow distribution within the PST and consequently, the hydrodynamic problems associated with short-circuiting of the influent to the bottom of the tank are reduced. The second baffle suppresses the downward current, effectively dissipates the kinetic energy in the influent and forces the particles to move toward the bottom of the PST. In addition, the second CW baffle allows the formation in the inlet zone of a consistently more concentrated sludge blanket layer and thicker sludge, reducing the risk of solids leaving in the effluent of the PST.
引用
收藏
页码:333 / 348
页数:16
相关论文
共 50 条
  • [41] Parametric and optimization study of a PEM fuel cell performance using three-dimensional computational fluid dynamics model
    Al-Baghdadi, Maher A. R. Sadiq
    Al-Janabi, Haroun A. K. Shahad
    RENEWABLE ENERGY, 2007, 32 (07) : 1077 - 1101
  • [42] Three-dimensional Computational Fluid Dynamics Based Design of Hull and Propeller of an Underwater Vehicle
    Shahab, Rameez
    Aamir, Ahmed Asees
    Khalid, Muahmmad SaifUllah
    Haq, Abdul
    PROCEEDINGS OF 2018 15TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2018, : 738 - 745
  • [43] Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling
    Wickramaarachchi, W. A. M. K. P.
    Narayana, Mahinsasa
    RENEWABLE ENERGY, 2020, 146 : 1153 - 1165
  • [44] Three-dimensional simulation of the Blalock-Taussig shunt using computational fluid dynamics
    Song, MH
    Sato, M
    Ueda, Y
    SURGERY TODAY, 2001, 31 (08) : 688 - 694
  • [45] Three-dimensional computational fluid dynamics simulation of valve-induced water hammer
    Yang, Shuai
    Wu, Dazhuan
    Lai, Zhounian
    Du, Tao
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2017, 231 (12) : 2263 - 2274
  • [46] Three-Dimensional Simulation of Hydrodynamics in a Rotating Disc Contactor using Computational Fluid Dynamics
    Ghaniyari-Benis, Saeid
    Hedayat, Nader
    Ziyari, Afshin
    Kazemzadeh, Mahsa
    Shafiee, Mojtaba
    CHEMICAL ENGINEERING & TECHNOLOGY, 2009, 32 (01) : 93 - 102
  • [47] Three-dimensional simulation of humid-air dryer using computational fluid dynamics
    Ryu, Jin-Bok
    Jung, Chi-Young
    Yi, Sung-Chul
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2013, 19 (04) : 1092 - 1098
  • [48] Geometric quality evaluation of three-dimensional printable concrete using computational fluid dynamics
    Cui, Weijiu
    Sun, Haijun
    Zhou, Jiangang
    Wang, Sheng
    Shi, Xinyu
    Tao, Yaxin
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2024, 18 (07) : 963 - 976
  • [49] Three-Dimensional Computational Fluid Dynamics Modeling of a Planar Solid Oxide Fuel Cell
    Ni, Meng
    CHEMICAL ENGINEERING & TECHNOLOGY, 2009, 32 (10) : 1484 - 1493
  • [50] Three-Dimensional Simulation of the Blalock-Taussig Shunt Using Computational Fluid Dynamics
    Min-Ho Song
    Masaru Sato
    Yuichi Ueda
    Surgery Today, 2001, 31 : 688 - 694