Independent generating sets and geometries for symmetric groups

被引:25
作者
Cameron, PJ
Cara, P
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
关键词
D O I
10.1016/S0021-8693(02)00550-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Julius Whiston showed that the size of an independent generating set in the symmetric group S(n) is at most n - 1. We determine all sets meeting this bound. We also give some general remarks on the maximum size of an independent generating set of a group and its relationship to coset geometries for the group. In particular, we determine all coset geometries of maximum rank for the symmetric group S(n) for n > 6. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:641 / 650
页数:10
相关论文
共 9 条
[1]   Some properties of inductively minimal geometries [J].
Buekenhout, F ;
Cara, P .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 1998, 5 (2-3) :213-219
[2]  
Buekenhout F, 1997, LECT NOTES PURE APPL, V190, P185
[3]  
BUEKENHOUT F, 1995, HDB INCIDENCE GEOMET, P63
[4]   On the number of inductively minimal geometries [J].
Cara, P ;
Lehman, S ;
Pasechnik, DV .
THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) :31-35
[5]  
*GAP GROUP, 2000, GAP GROUPS ALG PROGR
[6]  
TITS J, 1974, LECT NOTES MATH, V382
[7]   Maximal independent generating sets of the symmetric group [J].
Whiston, J .
JOURNAL OF ALGEBRA, 2000, 232 (01) :255-268
[8]  
WHISTON J, 2001, THESIS U CAMBRIDGE
[9]  
[No title captured]