Kazhdan-Lusztig-dual quantum group for logarithimic extensions of Virasoro minimal models

被引:52
作者
Feigin, B. L.
Gainutdinov, A. M.
Semikhatov, A. M.
Tipunin, I. Yu.
机构
[1] LD Landau Theoret Phys Inst, Moscow 119334, Russia
[2] PN Lebedev Phys Inst, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1063/1.2423226
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive and study a quantum group g(p,q) that is Kazhdan-Lusztig dual to the W-algebra W-p,W-q of the logarithmic (p,q) conformal field theory model. The algebra W-p,W-q is generated by two currents W+(z) and W-(z) of dimension (2p-1)(2q-1) and the energy-momentum tensor T(z). The two currents generate a vertex-operator ideal R with the property that the quotient W-p,W-q/R is the vertex-operator algebra of the (p,q) Virasoro minimal model. The number (2pq) of irreducible g(p,q) representations is the same as the number of irreducible W-p,W-q representations on which R acts nontrivially. We find the center of g(p,q) and show that the modular group representation on it is equivalent to the modular group representation on the W-p,W-q characters and "pseudocharacters." The factorization of the g(p,q) ribbon element leads to a factorization of the modular group representation on the center. We also find the g(p,q) Grothendieck ring, which is presumably the "logarithmic" fusion of the (p,q) model.
引用
收藏
页数:46
相关论文
共 32 条
[1]   FOCK SPACE RESOLUTIONS OF THE VIRASORO HIGHEST WEIGHT MODULES WITH C-LESS-THAN-OR-EQUAL-TO-1 [J].
BOUWKNEGT, P ;
MCCARTHY, J ;
PILCH, K .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (03) :193-204
[2]   CRITICAL PERCOLATION IN FINITE GEOMETRIES [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (04) :L201-L206
[3]   BOUNDARY-CONDITIONS, FUSION RULES AND THE VERLINDE FORMULA [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1989, 324 (03) :581-596
[4]  
Chari V., 1994, A Guide to Quantum Groups
[5]  
Drinfeld V.G., 1990, Leningrad Math. J., V2, P321
[6]   Logarithmic extensions of minimal models: Characters and modular transformations [J].
Feigin, B. L. ;
Gainutdinov, A. M. ;
Semikhatov, A. M. ;
Tipunin, I. Yu. .
NUCLEAR PHYSICS B, 2006, 757 (03) :303-343
[7]   Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center [J].
Feigin, B. L. ;
Gainutdinov, A. M. ;
Semikhatov, A. M. ;
Tipunin, I. Yu. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (01) :47-93
[8]  
Feigin B.L., MATHQA0512621
[9]   BRST APPROACH TO MINIMAL MODELS [J].
FELDER, G .
NUCLEAR PHYSICS B, 1989, 317 (01) :215-236
[10]  
FLOHR M, HEPTH0509075