Investigations into nanofluids as direct solar radiation collectors

被引:29
作者
Rose, B. A. J. [1 ]
Singh, H. [1 ]
Verma, N. [1 ]
Tassou, S. [1 ]
Suresh, S. [2 ]
Anantharaman, N. [2 ]
Mariotti, D. [3 ]
Maguire, P. [3 ]
机构
[1] Brunel Univ London, Inst Energy Futures, Uxbridge UB8 3PH, Middx, England
[2] Natl Inst Technol, Tiruchirappalli 620015, Tamil Nadu, India
[3] Ulster Univ, Nanotechnol & Integrated Bioengn Ctr, Newtownabbey BT3 0QB, North Ireland
基金
英国工程与自然科学研究理事会;
关键词
Nanofluid; Direct solar absorption; Solar thermal collector; Optical absorption; Nanofluid stability; Wave optics model;
D O I
10.1016/j.solener.2017.03.063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nanofluids that directly absorb solar radiation have been proposed as an alternative to selectively coated metallic receivers in solar thermal collectors. Given the expense of characterising a potential nanofluid experimentally methods for comparing nanofluids virtually are needed. This paper develops a computational wave optics model using COMSOL to simulate the absorption of nanoparticles suspended in a fluid for solar radiation (380-800 nm) and compares it to experimental results using reflectance and transmission spectrometry. It was concluded that while both yielded data with matching trends, the exact absorption of some fluids differed by up to 1 AU. Optical characteristics of nanofluids comprising ethylene glycol (melting point -12.99 degrees C and boiling point range 195-198 degrees C at 1013 h Pa) and graphene oxide (sheets size 5 nm x 19 nm x 19 nm, volume fraction 0.004-0.016%) have been experimentally measured. An optimum volume fraction of 0.012% of graphene oxide has been identified achieving a minimum reflectance and highest absorbance over the visible spectral range. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:426 / 431
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 1998, Handbook of Optical Constants of Solids
[2]  
Bohren C F., 1983, Absorption and Scattering of Light by Small Particles
[3]   Geometry optimization of a nanofluid-based direct absorption solar collector using response surface methodology [J].
Gorji, Tahereh B. ;
Ranjbar, A. A. .
SOLAR ENERGY, 2015, 122 :314-325
[4]   RAMAN AND FLUORESCENT SCATTERING BY MOLECULES EMBEDDED IN SMALL PARTICLES - NUMERICAL RESULTS FOR INCOHERENT OPTICAL PROCESSES [J].
KERKER, M ;
MCNULTY, PJ ;
SCULLEY, M ;
CHEW, H ;
COOKE, DD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1978, 68 (12) :1676-1686
[5]   Applicability of graphite nanofluids in direct solar energy absorption [J].
Ladjevardi, S. M. ;
Asnaghi, A. ;
Izadkhast, P. S. ;
Kashani, A. H. .
SOLAR ENERGY, 2013, 94 :327-334
[6]   Modified Beer's Law - historical perspectives and relevance in near-infrared monitoring of optical properties of human tissue [J].
Maikala, Rammohan V. .
INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 2010, 40 (02) :125-134
[7]   Graphene thickness determination using reflection and contrast spectroscopy [J].
Ni, Z. H. ;
Wang, H. M. ;
Kasim, J. ;
Fan, H. M. ;
Yu, T. ;
Wu, Y. H. ;
Feng, Y. P. ;
Shen, Z. X. .
NANO LETTERS, 2007, 7 (09) :2758-2763
[8]  
Novotny L., 2012, Principles of Nano-Optics
[9]   Optical properties of liquids for direct absorption solar thermal energy systems [J].
Otanicar, Todd P. ;
Phelan, Patrick E. ;
Golden, Jay S. .
SOLAR ENERGY, 2009, 83 (07) :969-977
[10]  
Peatross J., 2011, Physics of light and optics, P101