Quantum complex scalar fields and noncommutativity

被引:16
作者
Amorim, Ricardo [1 ]
Abreu, Everton M. C. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, Dept Fis, Grp Fis Teor & Matemat Fis, BR-23890000 Rio De Janeiro, Brazil
来源
PHYSICAL REVIEW D | 2009年 / 80卷 / 10期
关键词
GRAVITY; SPACETIME;
D O I
10.1103/PhysRevD.80.105010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work we analyze complex scalar fields using a new framework where the object of noncommutativity theta(mu nu) represents independent degrees of freedom. In a first quantized formalism, theta(mu nu) and its canonical momentum pi(mu nu) are seen as operators living in some Hilbert space. This structure is compatible with the minimal canonical extension of the Doplicher-Fredenhagen-Roberts algebra and is invariant under an extended Poincareacute group of symmetry. In a second quantized formalism perspective, we present an explicit form for the extended Poincareacute generators and the same algebra is generated via generalized Heisenberg relations. We also introduce a source term and construct the general solution for the complex scalar fields using the Green's function technique.
引用
收藏
页数:6
相关论文
共 39 条
[1]   Comments on noncommutative gravity [J].
Alvarez-Gaume, Luis ;
Meyer, Frank ;
Vazquez-Mozo, Miguel A. .
NUCLEAR PHYSICS B, 2006, 753 (1-2) :92-117
[2]  
AMORIM R, IN PRESS, P66401
[3]   Tensor coordinates in noncommutative mechanics [J].
Amorim, Ricardo .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (05)
[4]   Tensor operators in noncommutative quantum mechanics [J].
Amorim, Ricardo .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[5]   Dynamical symmetries in noncommutative theories [J].
Amorim, Ricardo .
PHYSICAL REVIEW D, 2008, 78 (10)
[6]   Fermions and noncommutative theories [J].
Amorim, Ricardo .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
[7]  
[Anonymous], 1998, STRING THEORY, DOI DOI 10.1017/CBO9780511618123
[8]  
[Anonymous], 1994, NONCOMMUTATIVE GEOME
[9]   Exact Seiberg-Witten map, induced gravity and topological invariants in non-commutative field theories [J].
Banerjee, R ;
Yang, HS .
NUCLEAR PHYSICS B, 2005, 708 :434-450
[10]   Noncommutative general relativity [J].
Calmet, X ;
Kobakhidze, A .
PHYSICAL REVIEW D, 2005, 72 (04) :1-5