Multi-label Learning for the Diagnosis of Cancer and Identification of Novel Biomarkers with High-throughput Omics

被引:7
作者
Liu, Shicai [1 ]
Tang, Hailin [1 ]
Liu, Hongde [1 ]
Wang, Jinke [1 ]
机构
[1] Southeast Univ, State Key Lab Bioelect, Sipailou 2, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Gastrointestinal cancer; machine learning; multi-label learning; transcriptomics; diagnostic biomarkers; omics; COLORECTAL-CANCER; STATISTICS;
D O I
10.2174/1574893615999200623130416
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: The advancement of bioinformatics and machine learning has facilitated the diagnosis of cancer and the discovery of omics-based biomarkers. Objective: Our study employed a novel data-driven approach to classifying the normal samples and different types of gastrointestinal cancer samples, to find potential biomarkers for effective diagnosis and prognosis assessment of gastrointestinal cancer patients. Methods: Different feature selection methods were used, and the diagnostic performance of the proposed biosignatures was benchmarked using support vector machine (SVM) and random forest (RF) models. Results: All models showed satisfactory performance in which Multilabel-RF appeared to be the best. The accuracy of the Multilabel-RF based model was 83.12%, with precision, recall, F1, and Hamming- Loss of 79.70%, 68.31%, 0.7357 and 0.1688, respectively. Moreover, proposed biomarker signatures were highly associated with multifaceted hallmarks in cancer. Functional enrichment analysis and impact of the biomarker candidates in the prognosis of the patients were also examined. Conclusion: We successfully introduced a solid workflow based on multi-label learning with High- Throughput Omics for diagnosis of cancer and identification of novel biomarkers. Novel transcriptome biosignatures that may improve the diagnostic accuracy in gastrointestinal cancer are introduced for further validations in various clinical settings.
引用
收藏
页码:261 / 273
页数:13
相关论文
共 47 条
[1]  
[Anonymous], 2011, Acm T. Intel. Syst. Tec., DOI DOI 10.1145/1961189.1961199
[2]   NeoMutate: an ensemble machine learning framework for the prediction of somatic mutations in cancer [J].
Anzar, Irantzu ;
Sverchkova, Angelina ;
Stratford, Richard ;
Clancy, Trevor .
BMC MEDICAL GENOMICS, 2019, 12 (1)
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Cancer Hallmarks Analytics Tool (CHAT): a text mining approach to organize and evaluate scientific literature on cancer [J].
Baker, Simon ;
Ali, Imran ;
Silins, Ilona ;
Pyysalo, Sampo ;
Guo, Yufan ;
Hogberg, Johan ;
Stenius, Ulla ;
Korhonen, Anna .
BIOINFORMATICS, 2017, 33 (24) :3973-3981
[5]   Blood-Based Protein Signatures for Early Detection of Colorectal Cancer: A Systematic Review [J].
Bhardwaj, Megha ;
Gies, Anton ;
Werner, Simone ;
Schrotz-King, Petra ;
Brenner, Hermann .
CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY, 2017, 8
[6]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[7]   Verification of gene expression profiles for colorectal cancer using 12 internet public microarray datasets [J].
Chang, Yu-Tien ;
Yao, Chung-Tay ;
Su, Sui-Lung ;
Chou, Yu-Ching ;
Chu, Chi-Ming ;
Huang, Chi-Shuan ;
Terng, Harn-Jing ;
Chou, Hsiu-Ling ;
Wetter, Thomas ;
Chen, Kang-Hua ;
Chang, Chi-Wen ;
Shih, Yun-Wen ;
Lai, Ching-Huang .
WORLD JOURNAL OF GASTROENTEROLOGY, 2014, 20 (46) :17476-17482
[8]   Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer [J].
Chaudharyl, Kumardeep ;
Poirionl, Olivier B. ;
Lu, Liangqun ;
Garmire, Lana X. .
CLINICAL CANCER RESEARCH, 2018, 24 (06) :1248-1259
[9]   Cancer Statistics in China, 2015 [J].
Chen, Wanqing ;
Zheng, Rongshou ;
Baade, Peter D. ;
Zhang, Siwei ;
Zeng, Hongmei ;
Bray, Freddie ;
Jemal, Ahmedin ;
Yu, Xue Qin ;
He, Jie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2016, 66 (02) :115-132
[10]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068