Exit times of symmetric α-stable processes from unbounded convex domains

被引:2
作者
Mendez-Hernandez, Pedro J. [1 ]
机构
[1] Univ Costa Rica, Escuela Matemat, San Jose, Costa Rica
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2007年 / 12卷
关键词
stable process; exit times; unbounded domains;
D O I
10.1214/EJP.v12-393
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-t be a d-dimensional symmetric stable process with parameter alpha is an element of (0, 2). Consider tau(D) the first exit time of X-t from the domain D = {(x, y) is an element of R x Rd-1 : 0 < x, vertical bar y vertical bar < phi(x)}, where phi is concave and lim(x ->infinity) phi(x) = infinity. We obtain upper and lower bounds for P-z {tau(D) > t} and for the harmonic measure of X-t killed upon leaving D boolean AND B(0, r). These estimates are, under some mild assumptions on phi, asymptotically sharp as t -> infinity. In particular, we determine the critical exponents of integrability of tau(D) for domains given by phi(x) = x(beta) [ln(x + 1)](gamma), where 0 <= beta i < 1, and gamma is an element of R. These results extend the work of R. Banuelos and R. Bogdan (2).
引用
收藏
页码:100 / 121
页数:22
相关论文
共 23 条
  • [1] [Anonymous], 1989, CAMBRIDGE TRACTS MAT
  • [2] [Anonymous], 1999, PROBAB MATH STAT
  • [3] Brownian motion in cones
    Banuelos, R
    Smits, RG
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (03) : 299 - 319
  • [4] Symmetric stable processes in cones
    Bañuelos, R
    Bogdan, K
    [J]. POTENTIAL ANALYSIS, 2004, 21 (03) : 263 - 288
  • [5] The Cauchy process and the Steklov problem
    Bañuelos, R
    Kulczycki, T
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (02) : 355 - 423
  • [6] Bañuelos R, 2001, ANN PROBAB, V29, P882
  • [7] BANUELOS R, SHARP INTEGRABILITY
  • [8] BANUELOS R, SYMMETRIC STABLE PRO
  • [9] Blumenthal R., 1960, Trans. Amer. Math. Soc., V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
  • [10] Bogdan K, 1999, STUD MATH, V133, P53