Optimal operation points for ultrafast, highly coherent Ge hole spin-orbit qubits

被引:61
作者
Wang, Zhanning [1 ,2 ]
Marcellina, Elizabeth [1 ,2 ]
Hamilton, Alex. R. [1 ,2 ]
Cullen, James H. [1 ]
Rogge, Sven [1 ,3 ]
Salfi, Joe [4 ]
Culcer, Dimitrie [1 ,2 ]
机构
[1] Univ New South Wales, Sch Phys, Sydney, NSW, Australia
[2] Univ New South Wales, Australian Res Council Ctr Excellence Future Low, Sydney, NSW, Australia
[3] Univ New South Wales, Ctr Quantum Computat & Commun Technol, Sydney, NSW, Australia
[4] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
基金
澳大利亚研究理事会;
关键词
D O I
10.1038/s41534-021-00386-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Strong spin-orbit interactions make hole quantum dots central to the quest for electrical spin qubit manipulation enabling fast, low-power, scalable quantum computation. Yet it is important to establish to what extent spin-orbit coupling exposes qubits to electrical noise, facilitating decoherence. Here, taking Ge as an example, we show that group IV gate-defined hole spin qubits generically exhibit optimal operation points, defined by the top gate electric field, at which they are both fast and long-lived: the dephasing rate vanishes to first order in the electric field noise along with all directions in space, the electron dipole spin resonance strength is maximized, while relaxation is drastically reduced at small magnetic fields. The existence of optimal operation points is traced to group IV crystal symmetry and properties of the Rashba spin-orbit interaction unique to spin-3/2 systems. Our results overturn the conventional wisdom that fast operation implies reduced lifetimes and suggest group IV hole spin qubits as ideal platforms for ultra-fast, highly coherent scalable quantum computing.
引用
收藏
页数:8
相关论文
共 81 条
[1]   SiGe quantum dots for fast hole spin Rabi oscillations [J].
Ares, N. ;
Katsaros, G. ;
Golovach, V. N. ;
Zhang, J. J. ;
Prager, A. ;
Glazman, L. I. ;
Schmidt, O. G. ;
De Franceschi, S. .
APPLIED PHYSICS LETTERS, 2013, 103 (26)
[2]   Nature of Tunable Hole g Factors in Quantum Dots [J].
Ares, N. ;
Golovach, V. N. ;
Katsaros, G. ;
Stoffel, M. ;
Fournel, F. ;
Glazman, L. I. ;
Schmidt, O. G. ;
De Franceschi, S. .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[3]   VARIATIONAL CALCULATIONS ON A QUANTUM WELL IN AN ELECTRIC-FIELD [J].
BASTARD, G ;
MENDEZ, EE ;
CHANG, LL ;
ESAKI, L .
PHYSICAL REVIEW B, 1983, 28 (06) :3241-3245
[4]   Charge noise, spin-orbit coupling, and dephasing of single-spin qubits [J].
Bermeister, Adam ;
Keith, Daniel ;
Culcer, Dimitrie .
APPLIED PHYSICS LETTERS, 2014, 105 (19)
[5]   Pauli blockade in a few-hole PMOS double quantum dot limited by spin-orbit interaction [J].
Bohuslavskyi, H. ;
Kotekar-Patil, D. ;
Maurand, R. ;
Corna, A. ;
Barraud, S. ;
Bourdet, L. ;
Hutin, L. ;
Niquet, Y. -M. ;
Jehl, X. ;
De Franceschi, S. ;
Vinet, M. ;
Sanquer, M. .
APPLIED PHYSICS LETTERS, 2016, 109 (19)
[6]   Anisotropic Pauli spin blockade in hole quantum dots [J].
Brauns, Matthias ;
Ridderbos, Joost ;
Li, Ang ;
Bakkers, Erik P. A. M. ;
van der Wiel, Wilfred G. ;
Zwanenburg, Floris A. .
PHYSICAL REVIEW B, 2016, 94 (04)
[7]   Schrieffer-Wolff transformation for quantum many-body systems [J].
Bravyi, Sergey ;
DiVincenzo, David P. ;
Loss, Daniel .
ANNALS OF PHYSICS, 2011, 326 (10) :2793-2826
[8]   All-electric qubit control in heavy hole quantum dots via non-Abelian geometric phases [J].
Budich, J. C. ;
Rothe, D. G. ;
Hankiewicz, E. M. ;
Trauzettel, B. .
PHYSICAL REVIEW B, 2012, 85 (20)
[9]   Electric dipole spin resonance for heavy holes in quantum dots [J].
Bulaev, Denis V. ;
Loss, Daniel .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[10]   Spin relaxation and decoherence of holes in quantum dots [J].
Bulaev, DV ;
Loss, D .
PHYSICAL REVIEW LETTERS, 2005, 95 (07)