Algebraically closed algebras in certain small congruence distributive varieties

被引:2
作者
Ouwehand, P. [1 ]
机构
[1] Univ Stellenbosch, Dept Math Sci, ZA-7600 Stellenbosch, South Africa
关键词
Algebraically closed algebras; absolute retracts; amalgamation; congruence distributivity; AMALGAMATION PROPERTY; LATTICE VARIETIES;
D O I
10.1007/s00012-009-0015-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a finitely generated congruence distributive variety satisfying a weak congruence extension property, the algebraically closed algebras are precisely up-directed unions of maximal subdirectly irreducibles. The class of algebraically closed algebras of such a variety is elementary and definable by Horn sentences.
引用
收藏
页码:247 / 260
页数:14
相关论文
共 23 条
[11]  
Jenner M., 2001, QUAEST MATH, V24, P129, DOI [10.1080/16073606.2001.9639200, DOI 10.1080/16073606.2001.9639200]
[12]   ABSOLUTE RETRACTS AND AMALGAMATION IN CERTAIN CONGRUENCE DISTRIBUTIVE VARIETIES [J].
JIPSEN, P ;
ROSE, H .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1989, 32 (03) :309-313
[13]   AMALGAMATION OF PURE EMBEDDINGS [J].
JONSSON, B .
ALGEBRA UNIVERSALIS, 1984, 19 (02) :266-268
[14]   AMALGAMATION IN SMALL VARIETIES OF LATTICES [J].
JONSSON, B .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 68 (1-2) :195-208
[15]  
NELSON E, 1975, ALGEBR UNIV, V5, P367
[16]   Filtral powers of structures [J].
Ouwehand, P ;
Rose, H .
JOURNAL OF SYMBOLIC LOGIC, 1998, 63 (04) :1239-1254
[17]   Lattice varieties with non-elementary amalgamation classes [J].
Ouwehand, P ;
Rose, H .
ALGEBRA UNIVERSALIS, 1999, 41 (04) :317-336
[18]  
Ouwehand P., 1996, PERIOD MATH HUNG, V33, P207
[19]   ALGEBRAICALLY AND EXISTENTIALLY CLOSED DISTRIBUTIVE LATTICES [J].
SCHMID, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (06) :525-530
[20]  
Taylor Walter., 1972, ALGEBR UNIV, V2, P33, DOI [10.1007/BF02945005, DOI 10.1007/BF02945005]