Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation

被引:5
作者
Zheng, Xiangcheng [1 ]
Li, Yiqun [1 ]
Cheng, Jin [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29208 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2021年 / 29卷 / 02期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Inverse problem; variable-order space-fractional diffusion equation; uniqueness of the determination of the variable order; spectral-Galerkin method; finite difference method; Levenberg Marquardt algorithm; ANOMALOUS DIFFUSION;
D O I
10.1515/jiip-2019-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues. In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain. We base on the analysis to develop a spectral-Galerkin Levenberg Marquardt method and a finite difference Levenberg-Marquardt method to numerically invert the variable order. We carry out numerical experiments to investigate the numerical performance of these methods.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
[41]   The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method [J].
Hosseini, Vahid Reza ;
Yousefi, Farzaneh ;
Zou, W. -N. .
JOURNAL OF ADVANCED RESEARCH, 2021, 32 :73-84
[42]   An Analysis and Global Identification of Smoothless Variable Order of a Fractional Stochastic Differential Equation [J].
Li, Qiao ;
Zheng, Xiangcheng ;
Wang, Hong ;
Yang, Zhiwei ;
Guo, Xu .
FRACTAL AND FRACTIONAL, 2023, 7 (12)
[43]   A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation [J].
Heydari, Mohammad Hossein ;
Avazzadeh, Zakieh ;
Haromi, Malih Farzi .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 341 :215-228
[44]   Analysis and Numerical Approximation for a Nonlinear Hidden-Memory Variable-Order Fractional Stochastic Differential Equation [J].
Jia, Jinhong ;
Yang, Zhiwei ;
Zheng, Xiangcheng ;
Wang, Hong .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (03) :673-695
[45]   Numerical analysis for a variable-order nonlinear cable equation [J].
Chen, Chang-Ming ;
Liu, F. ;
Burrage, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (02) :209-224
[46]   ANALYSIS OF A MULTI-TERM VARIABLE-ORDER TIME-FRACTIONAL DIFFUSION EQUATION AND ITS GALERKIN FINITE ELEMENT APPROXIMATION [J].
Liu, Huan ;
Null, Xiangcheng Zheng ;
Fu, Hongfei .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (05) :818-838
[47]   A stabilizer-free weak Galerkin finite element method to variable-order time fractional diffusion equation in multiple space dimensions [J].
Ma, Jie ;
Gao, Fuzheng ;
Du, Ning .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (03) :2096-2114
[48]   On Time-Fractional Diffusion Equations with Space-Dependent Variable Order [J].
Kian, Yavar ;
Soccorsi, Eric ;
Yamamoto, Masahiro .
ANNALES HENRI POINCARE, 2018, 19 (12) :3855-3881
[49]   A fast algorithm for time-fractional diffusion equation with space-time-dependent variable order [J].
Jia, Jinhong ;
Wang, Hong ;
Zheng, Xiangcheng .
NUMERICAL ALGORITHMS, 2023, 94 (04) :1705-1730
[50]   An Optimization Wavelet Method for Multi Variable-order Fractional Differential Equations [J].
Heydari, M. H. ;
Hooshmandasl, M. R. ;
Cattani, C. ;
Hariharan, G. .
FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) :255-273