Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation

被引:5
|
作者
Zheng, Xiangcheng [1 ]
Li, Yiqun [1 ]
Cheng, Jin [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29208 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2021年 / 29卷 / 02期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Inverse problem; variable-order space-fractional diffusion equation; uniqueness of the determination of the variable order; spectral-Galerkin method; finite difference method; Levenberg Marquardt algorithm; ANOMALOUS DIFFUSION;
D O I
10.1515/jiip-2019-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues. In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain. We base on the analysis to develop a spectral-Galerkin Levenberg Marquardt method and a finite difference Levenberg-Marquardt method to numerically invert the variable order. We carry out numerical experiments to investigate the numerical performance of these methods.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
  • [31] Analysis and numerical solution of a nonlinear variable-order fractional differential equation
    Wang, Hong
    Zheng, Xiangcheng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) : 2647 - 2675
  • [32] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Ngo, Hoa T. B.
    Razzaghi, Mohsen
    Vo, Thieu N.
    NUMERICAL ALGORITHMS, 2023, 92 (03) : 1571 - 1588
  • [33] A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
    Pang, Hong-Kui
    Sun, Hai-Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [34] A characteristic difference method for the variable-order fractional advection-diffusion equation
    Shen S.
    Liu F.
    Anh V.
    Turner I.
    Chen J.
    Journal of Applied Mathematics and Computing, 2013, 42 (1-2) : 371 - 386
  • [35] A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
    Hong-Kui Pang
    Hai-Wei Sun
    Journal of Scientific Computing, 2021, 87
  • [36] An Efficient Numerical Scheme for Variable-Order Fractional Sub-Diffusion Equation
    Ali, Umair
    Sohail, Muhammad
    Abdullah, Farah Aini
    SYMMETRY-BASEL, 2020, 12 (09):
  • [37] Multiplicity Results for Variable-Order Nonlinear Fractional Magnetic Schrodinger Equation with Variable Growth
    Zhou, Jianwen
    Zhou, Bianxiang
    Wang, Yanning
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [38] Wellposedness and regularity of a nonlinear variable-order fractional wave equation
    Zheng, Xiangcheng
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 29 - 35
  • [39] A Meshless Method for the Variable-Order Time Fractional Telegraph Equation
    Gharian, D.
    Ghaini, F. M. Maalek
    Heydari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2019, 13 (03) : 35 - 56
  • [40] A Simultaneous Inversion Problem for the Variable-Order Time Fractional Differential Equation with Variable Coefficient
    Wang, Shengnan
    Wang, Zhendong
    Li, Gongsheng
    Wang, Yingmei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019