Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation

被引:5
作者
Zheng, Xiangcheng [1 ]
Li, Yiqun [1 ]
Cheng, Jin [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29208 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2021年 / 29卷 / 02期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Inverse problem; variable-order space-fractional diffusion equation; uniqueness of the determination of the variable order; spectral-Galerkin method; finite difference method; Levenberg Marquardt algorithm; ANOMALOUS DIFFUSION;
D O I
10.1515/jiip-2019-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues. In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain. We base on the analysis to develop a spectral-Galerkin Levenberg Marquardt method and a finite difference Levenberg-Marquardt method to numerically invert the variable order. We carry out numerical experiments to investigate the numerical performance of these methods.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
[31]   All-at-once method for variable-order time fractional diffusion equations [J].
Hong-Kui Pang ;
Hai-Hua Qin ;
Hai-Wei Sun .
Numerical Algorithms, 2022, 90 :31-57
[32]   An Inverse Problem of Recovering the Variable Order of the Derivative in a Fractional Diffusion Equation [J].
Artyushin, A. N. .
SIBERIAN MATHEMATICAL JOURNAL, 2023, 64 (04) :796-806
[33]   An Inverse Problem of Recovering the Variable Order of the Derivative in a Fractional Diffusion Equation [J].
A. N. Artyushin .
Siberian Mathematical Journal, 2023, 64 :796-806
[34]   A meshless method for solving three-dimensional time fractional diffusion equation with variable-order derivatives [J].
Gu, Yan ;
Sun, HongGuang .
APPLIED MATHEMATICAL MODELLING, 2020, 78 (78) :539-549
[35]   THE ENCLOSURE METHOD FOR THE DETECTION OF VARIABLE ORDER IN FRACTIONAL DIFFUSION EQUATIONS [J].
Ikehata, Masaru ;
Kian, Yavar .
INVERSE PROBLEMS AND IMAGING, 2023, 17 (01) :180-202
[36]   A Parareal Finite Volume Method for Variable-Order Time-Fractional Diffusion Equations [J].
Liu, Huan ;
Cheng, Aijie ;
Wang, Hong .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (01)
[37]   Method of approximate particular solutions for constant- and variable-order fractional diffusion models [J].
Fu, Zhuo-Jia ;
Chen, Wen ;
Ling, Leevan .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 57 :37-46
[38]   Physics-informed neural network algorithm for solving forward and inverse problems of variable-order space-fractional advection-diffusion equations [J].
Wang, Shupeng ;
Zhang, Hui ;
Jiang, Xiaoyun .
NEUROCOMPUTING, 2023, 535 :64-82
[39]   A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation [J].
Tayebi, A. ;
Shekari, Y. ;
Heydari, M. H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 340 :655-669
[40]   An optimization method based on the generalized polynomials for nonlinear variable-order time fractional diffusion-wave equation [J].
Dahaghin, M. Sh. ;
Hassani, H. .
NONLINEAR DYNAMICS, 2017, 88 (03) :1587-1598