Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation

被引:5
|
作者
Zheng, Xiangcheng [1 ]
Li, Yiqun [1 ]
Cheng, Jin [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29208 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2021年 / 29卷 / 02期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Inverse problem; variable-order space-fractional diffusion equation; uniqueness of the determination of the variable order; spectral-Galerkin method; finite difference method; Levenberg Marquardt algorithm; ANOMALOUS DIFFUSION;
D O I
10.1515/jiip-2019-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues. In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain. We base on the analysis to develop a spectral-Galerkin Levenberg Marquardt method and a finite difference Levenberg-Marquardt method to numerically invert the variable order. We carry out numerical experiments to investigate the numerical performance of these methods.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
  • [21] Stability and convergence of the space fractional variable-order Schrödinger equation
    Abdon Atangana
    Alain H Cloot
    Advances in Difference Equations, 2013
  • [22] Fibonacci collocation pseudo-spectral method of variable-order space-fractional diffusion equations with error analysis
    Mohamed, A. S.
    AIMS MATHEMATICS, 2022, 7 (08): : 14323 - 14337
  • [23] Variable-Order Fractional Scale Calculus
    Valerio, Duarte
    Ortigueira, Manuel D.
    MATHEMATICS, 2023, 11 (21)
  • [24] Space-time pseudospectral method for the variable-order space-time fractional diffusion equation
    Gupta, Rupali
    Kumar, Sushil
    MATHEMATICAL SCIENCES, 2024, 18 (03) : 419 - 436
  • [25] Variable-order time-fractional diffusion equation with Mittag-Leffler kernel: regularity analysis and uniqueness of determining variable order
    Guo, Xu
    Zheng, Xiangcheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [26] On variable-order fractional linear viscoelasticity
    Giusti, Andrea
    Colombaro, Ivano
    Garra, Roberto
    Garrappa, Roberto
    Mentrelli, Andrea
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1564 - 1578
  • [27] Variable-order time-fractional diffusion equation with Mittag-Leffler kernel: regularity analysis and uniqueness of determining variable order
    Xu Guo
    Xiangcheng Zheng
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [28] Analysis and numerical solution of a nonlinear variable-order fractional differential equation
    Hong Wang
    Xiangcheng Zheng
    Advances in Computational Mathematics, 2019, 45 : 2647 - 2675
  • [29] Meshfree methods for the nonlinear variable-order fractional advection-diffusion equation
    Ju, Yuejuan
    Liu, Zhiyong
    Yang, Jiye
    Xu, Qiuyan
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 156 : 126 - 143
  • [30] Fractional-order Chelyshkov wavelet method for solving variable-order fractional differential equations and an application in variable-order fractional relaxation system
    Hoa T. B. Ngo
    Mohsen Razzaghi
    Thieu N. Vo
    Numerical Algorithms, 2023, 92 : 1571 - 1588