Inverting the variable fractional order in a variable-order space-fractional diffusion equation with variable diffusivity: Analysis and simulation

被引:5
作者
Zheng, Xiangcheng [1 ]
Li, Yiqun [1 ]
Cheng, Jin [2 ]
Wang, Hong [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29208 USA
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2021年 / 29卷 / 02期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Inverse problem; variable-order space-fractional diffusion equation; uniqueness of the determination of the variable order; spectral-Galerkin method; finite difference method; Levenberg Marquardt algorithm; ANOMALOUS DIFFUSION;
D O I
10.1515/jiip-2019-0040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variable-order space-fractional diffusion equations provide very competitive modeling capabilities of challenging phenomena, including anomalously superdiffusive transport of solutes in heterogeneous porous media, long-range spatial interactions and other applications, as well as eliminating the nonphysical boundary layers of the solutions to their constant-order analogues. In this paper, we prove the uniqueness of determining the variable fractional order of the homogeneous Dirichlet boundary-value problem of the one-sided linear variable-order space-fractional diffusion equation with some observed values of the unknown solutions near the boundary of the spatial domain. We base on the analysis to develop a spectral-Galerkin Levenberg Marquardt method and a finite difference Levenberg-Marquardt method to numerically invert the variable order. We carry out numerical experiments to investigate the numerical performance of these methods.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
[21]   All-at-once method for variable-order time fractional diffusion equations [J].
Pang, Hong-Kui ;
Qin, Hai-Hua ;
Sun, Hai-Wei .
NUMERICAL ALGORITHMS, 2022, 90 (01) :31-57
[22]   Legendre wavelets optimization method for variable-order fractional Poisson equation [J].
Heydari, Mohammad Hossein ;
Avazzadeh, Zakieh .
CHAOS SOLITONS & FRACTALS, 2018, 112 :180-190
[23]   An operational matrix method for solving variable-order fractional biharmonic equation [J].
Heydari, M. H. ;
Avazzadeh, Z. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) :4397-4411
[24]   Wellposedness and regularity of the variable-order time-fractional diffusion equations [J].
Wang, Hong ;
Zheng, Xiangcheng .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) :1778-1802
[25]   A variable-order fractional differential equation model of shape memory polymers [J].
Li, Zheng ;
Wang, Hong ;
Xiao, Rui ;
Yang, Su .
CHAOS SOLITONS & FRACTALS, 2017, 102 :473-485
[26]   The Numerical Simulation of Space-Time Variable Fractional Order Diffusion Equations [J].
Zhang, Hongmei ;
Shen, Shujun .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2013, 6 (04) :571-585
[27]   The unique identification of variable-order fractional wave equations [J].
Zheng, Xiangcheng ;
Wang, Hong .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03)
[28]   The unique identification of variable-order fractional wave equations [J].
Xiangcheng Zheng ;
Hong Wang .
Zeitschrift für angewandte Mathematik und Physik, 2021, 72
[29]   A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients [J].
Feng, L. B. ;
Zhuang, P. ;
Liu, F. ;
Turner, I. ;
Anh, V. ;
Li, J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1155-1171
[30]   AN ERROR ESTIMATE OF A NUMERICAL APPROXIMATION TO A HIDDEN-MEMORY VARIABLE-ORDER SPACE-TIME FRACTIONAL DIFFUSION EQUATION [J].
Zheng, Xiangcheng ;
Wang, Hong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) :2492-2514