Quasiseparation of variables in the Schrodinger equation with a magnetic field

被引:16
作者
Charest, F.
Hudon, C.
Winternitz, P.
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Dept Phys, Montreal, PQ H3C 3J7, Canada
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1063/1.2399087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a two-dimensional integrable Hamiltonian system with a vector and scalar potential in quantum mechanics. Contrary to the case of a pure scalar potential, the existence of a second order integral of motion does not guarantee the separation of variables in the Schrodinger equation. We introduce the concept of "quasiseparation of variables" and show that in many cases it allows us to reduce the calculation of the energy spectrum and wave functions to linear algebra. (c) 2007 American Institute of Physics.
引用
收藏
页数:16
相关论文
共 24 条
[1]   Variable separation for natural Hamiltonians with scalar and vector potentials on Riemannian manifolds [J].
Benenti, S ;
Chanu, C ;
Rastelli, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (05) :2065-2091
[2]   Integrable and superintegrable quantum systems in a magnetic field [J].
Bérubé, J ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (05) :1959-1973
[3]   INTEGRABLE HAMILTONIAN-SYSTEMS WITH VELOCITY-DEPENDENT POTENTIALS [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (12) :3070-3079
[4]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[5]   GROUP-THEORY OF THE SMORODINSKY-WINTERNITZ SYSTEM [J].
EVANS, NW .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3369-3375
[6]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+
[7]   Hamiltonians separable in Cartesian coordinates and third-order integrals of motion [J].
Gravel, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :1003-1019
[8]   Superintegrability with third-order integrals in quantum and classical mechanics [J].
Gravel, S ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5902-5912
[9]   CLASSICAL VERSUS QUANTUM INTEGRABILITY [J].
HIETARINTA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) :1833-1840
[10]   Pure quantum integrability [J].
Hietarinta, J .
PHYSICS LETTERS A, 1998, 246 (1-2) :97-104