Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment

被引:90
作者
Sultana, Rukhsana [1 ,2 ,3 ]
Butterfield, D. Allan [1 ,2 ,3 ]
机构
[1] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA
[2] Univ Kentucky, Ctr Membrane Sci, Lexington, KY 40506 USA
[3] Univ Kentucky, Sanders Brown Ctr Aging, Lexington, KY 40506 USA
关键词
Oxidative stress; Alzheimer's disease; Mitochondria; MCI; LIPID-PEROXIDATION PRODUCT; AMYLOID PRECURSOR PROTEIN; DEPENDENT ANION CHANNEL; CYTOCHROME-C-OXIDASE; CREATINE-KINASE BB; BETA-PEPTIDE; 1-42; A-BETA; PROTEOMIC IDENTIFICATION; ATP-SYNTHASE; CELL-DEATH;
D O I
10.1007/s10863-009-9241-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Alzheimer disease (AD) is an age-related neurodegenerative disorder, characterized histopathologically by the presence of senile plaques (SP), neurofibrillary tangles and synapse loss in selected brain regions. Positron emission tomography (PET) studies of glucose metabolism revealed decreased energetics in brain of subjects with AD and arguably its earliest form, mild cognitive impairment (MCI), and this decrease correlated with brain structural studies using MRI. The main component of senile plaques is amyloid beta-peptide (A beta), a 40-42 amino acid peptide that as oligomers is capable of inducing oxidative stress under both in vitro and in vivo conditions and is neurotoxic. In the mitochondria isolated from AD brain, A beta oligomers that correlated with the reported increased oxidative stress markers in AD have been reported. The markers of oxidative stress have been localized in the brain regions of AD and MCI that show pathological hallmarks of this disease, suggesting the possible role of A beta in the initiation of the free-radical mediated process and consequently to the build up oxidative stress and AD pathogenesis. Using redox proteomics our laboratory found a number of oxidatively modified brain proteins that are directly in or are associated with the mitochondrial proteome, consistent with a possible involvement of the mitochondrial targeted oxidatively modified proteins in AD progression or pathogenesis. The precise mechanistic link between mitochondrial oxidative damage and role of oligomeric A beta has not been explicated. In this review, we discuss the role of the oxidation of mitochondria-relevant brain proteins to the pathogenesis and progression of AD.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 85 条
[11]   The critical role of methionine 35 in Alzheimer's amyloid-β-peptide (1-42)-induced oxidative stress and neurotoxicity [J].
Butterfield, DA ;
Boyd-Kimball, D .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2005, 1703 (02) :149-156
[12]   Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer's disease [J].
Butterfield, DA ;
Poon, HF ;
Clair, DS ;
Keller, JN ;
Pierce, WM ;
Klein, JB ;
Markesbery, WR .
NEUROBIOLOGY OF DISEASE, 2006, 22 (02) :223-232
[13]   Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment [J].
Butterfield, DA ;
Reed, T ;
Perluigi, M ;
De Marco, C ;
Coccia, R ;
Cini, C ;
Sultana, R .
NEUROSCIENCE LETTERS, 2006, 397 (03) :170-173
[14]   Evidence of oxidative damage in Alzheimer's disease brain:: central role for amyloid β-peptide [J].
Butterfield, DA ;
Drake, J ;
Pocernich, C ;
Castegna, A .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (12) :548-554
[15]   Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer's amyloid β-peptide 1-42 [J].
Butterfield, DA ;
Kanski, J .
PEPTIDES, 2002, 23 (07) :1299-1309
[16]   Lipid peroxidation and protein oxidation in Alzheimer's disease brain:: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress [J].
Butterfield, DA ;
Lauderback, CM .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (11) :1050-1060
[17]   Tubulin is an inherent component of mitochondrial membranes that interacts with the voltage-dependent anion channel [J].
Carré, M ;
André, N ;
Carles, G ;
Borghi, H ;
Brichese, L ;
Briand, C ;
Braguer, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :33664-33669
[18]   β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities [J].
Casley, CS ;
Canevari, L ;
Land, JM ;
Clark, JB ;
Sharpe, MA .
JOURNAL OF NEUROCHEMISTRY, 2002, 80 (01) :91-100
[19]   Mitochondrial Aβ:: a potential focal point for neuronal metabolic dysfunction in Alzheimer's disease [J].
Caspersen, C ;
Wang, N ;
Yao, J ;
Sosunov, A ;
Chen, X ;
Lustbader, JW ;
Xu, HW ;
Stern, D ;
McKhann, G ;
Yan, SD .
FASEB JOURNAL, 2005, 19 (12) :2040-+
[20]   Proteomic identification of nitrated proteins in Alzheimer's disease brain [J].
Castegna, A ;
Thongboonkerd, V ;
Klein, JB ;
Lynn, B ;
Markesbery, WR ;
Butterfield, DA .
JOURNAL OF NEUROCHEMISTRY, 2003, 85 (06) :1394-1401