A data mining approach for generation of control signatures

被引:14
作者
Kusiak, A [1 ]
机构
[1] Univ Iowa, Dept Mech & Ind Engn, Intelligent Syst Lab, Iowa City, IA 52242 USA
来源
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME | 2002年 / 124卷 / 04期
关键词
D O I
10.1115/1.1511524
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data mining offers methodologies and tools for data analysis, discovery of new knowledge, and autonomous process control. This paper introduces basic data mining algorithms. An approach based on rough set theory is used to derive associations among control parameters and the product quality in the form of decision rules. The model presented in the paper produces control signatures leading to good quality products of a metal forming process. The computational results reported in the paper indicate that data mining opens a new avenue for decision-making in material forming industry.
引用
收藏
页码:923 / 926
页数:4
相关论文
共 28 条
[1]  
AGRAVAL R, 1994, 9839 IBM ALM RES CTR
[2]   TOLERATING NOISY, IRRELEVANT AND NOVEL ATTRIBUTES IN INSTANCE-BASED LEARNING ALGORITHMS [J].
AHA, DW .
INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1992, 36 (02) :267-287
[3]  
[Anonymous], 2000, COMPUTATIONAL INTELL
[4]  
AUER P, 1995, P 8 EUR C MACH LEARN
[5]  
BOOKER LB, 1989, PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P265
[6]  
Cherkassky V.S., 1998, LEARNING DATA CONCEP, V1st ed.
[7]   PRO-OPIOMELANOCORTIN MESSENGER-RNA SIZE HETEROGENEITY IN ACTH-DEPENDENT CUSHINGS-SYNDROME [J].
CLARK, AJL ;
LAVENDER, PM ;
BESSER, GM ;
REES, LH .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 1989, 2 (01) :3-9
[8]  
DONNART JY, 1994, COM ADAP SY, P144
[9]  
DORMINGOS P, 1996, P 13 INT C MORG KAUF, P105
[10]  
FRIEDMAN J, 1996, P 13 NAT C ART INT A