Gravitational Rutherford scattering of electrically charged particles from a charged Weyl black hole

被引:13
作者
Fathi, Mohsen [1 ]
Olivares, Marco [2 ]
Villanueva, J. R. [1 ]
机构
[1] Univ Valparaiso, Inst Fis & Astron, Ave Gran Bretana 1111, Valparaiso, Chile
[2] Univ Diego Portales, Fac Ingn & Ciencias, Ave Ejercito Libertador 441,Casilla 298-5, Santiago, Chile
关键词
REISSNER-NORDSTROM; RADIATION REACTION; MOTION; FIELD; KERR; SINGULARITIES; EQUATIONS; SPACETIME; GRAVITY; ORBITS;
D O I
10.1140/epjp/s13360-021-01441-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Considering electrically charged test particles, we continue our study of the exterior dynamics of a charged Weyl black hole which has been previously investigated regarding the motion of mass-less and (neutral) massive particles. In this paper, the deflecting trajectories of charged particles are designated as being gravitationally Rutherford-scattered and detailed discussion of angular and radial particle motions is presented.
引用
收藏
页数:27
相关论文
共 80 条
[1]   Magnetized Particle Motion in γ-Spacetime in a Magnetic Field [J].
Abdujabbarov, Ahmadjon ;
Rayimbaev, Javlon ;
Atamurotov, Farruh ;
Ahmedov, Bobomurat .
GALAXIES, 2020, 8 (04) :1-20
[2]   Motion of charged particles around a rotating black hole in a magnetic field [J].
Aliev, AN ;
Özdemir, N .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2002, 336 (01) :241-248
[3]   Quantum-corrected scattering and absorption of a Schwarzschild black hole with GUP [J].
Anacleto, M. A. ;
Brito, F. A. ;
Campos, J. A., V ;
Passos, E. .
PHYSICS LETTERS B, 2020, 810
[4]  
[Anonymous], 2011, 187th Gen. Ct.
[5]  
[Anonymous], 2002, MATH THEORY BLACK HO
[6]  
[Anonymous], 1956, Acta Phys. Polon, DOI [DOI 10.1007/S10714-009-0787-9, 10.1007/s10714-009-0787-9]
[7]   Motions and worldline deviations in Einstein-Maxwell theory [J].
Balakin, A ;
van Holten, JW ;
Kerner, R .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (24) :5009-5023
[8]  
BAZANSKI SL, 1989, J MATH PHYS, V30, P1018, DOI 10.1063/1.528370
[9]  
BICAK J, 1989, B ASTRON I CZECH, V40, P65
[10]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA, V67, P191, DOI [DOI 10.1007/978-3-642-65138-0, 10.1007/978-3-642-65138-0_6, DOI 10.1007/978-3-642-65138-0_6]