Greenhouse gas (CO2, CH4, N2O) emissions from soils following afforestation in central China

被引:40
|
作者
Dou, Xiaolin [1 ]
Zhou, Wei [1 ]
Zhang, Quanfa [2 ]
Cheng, Xiaoli [2 ]
机构
[1] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Minist Agr, Key Lab Plant Nutr & Fertilizer, Beijing 100081, Peoples R China
[2] Chinese Acad Sci, Wuhan Bot Garden, Key Lab Aquat Bot & Watershed Ecol, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Afforestation; Greenhouse fluxes; Soil-atmosphere exchange; Soil properties; LAND-USE CHANGES; ATMOSPHERE EXCHANGE; NITROGEN DYNAMICS; SEASONAL-CHANGES; FLUXES; CARBON; RESPIRATION; FOREST; INCREASE; PLANTATIONS;
D O I
10.1016/j.atmosenv.2015.11.054
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effects of afforestation are of great importance for terrestrial carbon sequestration. However, the consequences of afforestation for greenhouse gas (GHG, CO2, CH4 and N2O) fluxes remain poorly quantified. We investigate the temporal variations in CO2, CH4 and N2O fluxes in afforested soils (implementing woodland and shrubland) and the adjacent uncultivated area in the Danjiangkou Reservoir area of central China. We examined the effects of soil factors [e.g. soil temperature, soil moisture, soil pH, soil organic carbon (SOC), soil organic nitrogen (SON)], litter exclusion and vegetation types on GHG fluxes. Our results revealed that afforestation lead to a higher average CO2 flux from soils by 63.96% and a higher N2O flux by 54.53% in the observed year. The peak CO2 and CH4 fluxes from afforested soils occurred in summer, while the peak N2O flux occurred in winter. Afforestation also enhanced CH4 flux from soil with the largest increase by 247.94% in woodland and by 188.18% in shrubland in spring compared with the open area. On average, surface litter exclusion reduced soil CO2 fluxes by 18.84% and N2O fluxes by 27.93% in the woodland. The surface litter exclusion did not significantly affect CH4 flux from the afforested soils. The CO2, CH4 and N2O fluxes from soils were strongly influenced by soil temperature, moisture and SOC content across seasons. The N2O flux was also strongly affected by SON content in our experimental field. Our results suggested that afforestation enhanced GHG fluxes from soils; however, the magnitude of the GHG fluxes should also be considered from various environmental conditions and vegetation types. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:98 / 106
页数:9
相关论文
共 50 条
  • [1] Are there memory effects on greenhouse gas emissions (CO2, N2O and CH4) following grassland restoration?
    Merbold, Lutz
    Decock, Charlotte
    Eugster, Werner
    Fuchs, Kathrin
    Wolf, Benjamin
    Buchmann, Nina
    Hortnagl, Lukas
    BIOGEOSCIENCES, 2021, 18 (04) : 1481 - 1498
  • [2] Greenhouse gas (CO2, CH4, and N2O) emissions after abandonment of agriculture
    El-Hawwary, Alaa
    Brenzinger, Kristof
    Lee, Hyo Jung
    Veraart, Annelies J.
    Morrien, Elly
    Schloter, Michael
    van der Putten, Wim H.
    Bodelier, Paul L. E.
    Ho, Adrian
    BIOLOGY AND FERTILITY OF SOILS, 2022, 58 (05) : 579 - 591
  • [3] Greenhouse gas (CO2, CH4, and N2O) emissions after abandonment of agriculture
    Alaa El-Hawwary
    Kristof Brenzinger
    Hyo Jung Lee
    Annelies J. Veraart
    Elly Morriën
    Michael Schloter
    Wim H. van der Putten
    Paul L. E. Bodelier
    Adrian Ho
    Biology and Fertility of Soils, 2022, 58 : 579 - 591
  • [4] Differential response of soil CO2, CH4, and N2O emissions to edaphic properties and microbial attributes following afforestation in central China
    Chen, Qiong
    Long, Chunyan
    Chen, Jingwen
    Cheng, Xiaoli
    GLOBAL CHANGE BIOLOGY, 2021, 27 (21) : 5657 - 5669
  • [5] EMISSIONS OF N2O, CH4 AND CO2 FROM TROPICAL FOREST SOILS
    KELLER, M
    KAPLAN, WA
    WOFSY, SC
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1986, 91 (D11) : 1791 - 1802
  • [6] Greenhouse Gas (CH4, CO2, N2O) Emissions from Estuarine Tidal and Wetland and Their Characteristics
    Kim, Deug-Soo
    JOURNAL OF KOREAN SOCIETY FOR ATMOSPHERIC ENVIRONMENT, 2007, 23 (02) : 225 - 241
  • [7] Greenhouse-gas(CH4, N2O and CO2) emissions from hydroelectric reservoirs in Switzerland
    Diem, T.
    Koch, S.
    Schwarzenbach, S.
    Wehrli, B.
    Schubert, C. J.
    WATER-ROCK INTERACTION, VOLS 1 AND 2, PROCEEDINGS, 2007, : 1219 - 1222
  • [8] GREENHOUSE GAS (CO2 AND N2O) EMISSIONS FROM SOILS: A REVIEW
    Munoz, Cristina
    Paulino, Leandro
    Monreal, Carlos
    Zagal, Erick
    CHILEAN JOURNAL OF AGRICULTURAL RESEARCH, 2010, 70 (03): : 485 - 497
  • [9] Emissions of CO2, CH4 and N2O from pasture on drained peat soils in the Netherlands
    Langeveld, CA
    Segers, R
    Dirks, BOM
    vandenPolvanDasselaar, A
    Velthof, GL
    Hensen, A
    EUROPEAN JOURNAL OF AGRONOMY, 1997, 7 (1-3) : 35 - 42
  • [10] Greenhouse gas (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream in Czech Republic
    Hlavácová, E
    Rulík, M
    Cáp, L
    Mach, V
    ARCHIV FUR HYDROBIOLOGIE, 2006, 165 (03): : 339 - 353