Decomposition of bipartite graphs into special subgraphs

被引:0
作者
Chen, Guantao [1 ]
Schelp, Richard H.
机构
[1] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
[2] Cent China Normal Univ, Fac Math & Stat, Wuhan 430079, Peoples R China
[3] Memphis State Univ, Dept Math Sci, Memphis, TN 38152 USA
关键词
factorization; orthogonal; complete bipartite graphs;
D O I
10.1016/j.dam.2006.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F and G be two graphs and let H be a subgraph of G. A decomposition of G into subgraphs F-1. F-2.....F-m is called an F-factorization of G orthogonal to H if Fi congruent to F and vertical bar E(F-i boolean AND H)vertical bar = 1 for each i = 1.2.....m. Gyarfas and Schelp conjectured that the complete bipartite graph K-4k,K-4k has a C-4-factorization orthogonal to H provided that H is a k-factor of K-4k.4k. In this paper, we show that (1) the conjecture is true when H satisfies some structural conditions: (2) for any two positive integers r >= k, K-kr2.kr.2 has a K-r.r-factorization orthogonal to H if H is a k-factor of K-kr2.kr2; (3) K-2d2.(2d2) has a C-4-factorization such that each edge of H belongs to a different C-4 if H is a subgraph of K-2d2.2d2 with maximum degree Delta(H)<= d. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:400 / 404
页数:5
相关论文
共 50 条
  • [31] KI,pk-factorization of complete bipartite graphs
    Du B.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (2) : 107 - 110
  • [32] Note on Path-Connectivity of Complete Bipartite Graphs
    Gao, Xiaoxue
    Li, Shasha
    Zhao, Yan
    JOURNAL OF INTERCONNECTION NETWORKS, 2022, 22 (01)
  • [33] Kp,q-factorization of complete bipartite graphs
    Beiliang Du
    Jian Wang
    Science in China Series A: Mathematics, 2004, 47 : 473 - 479
  • [34] Bounds on Ramsey Numbers of Certain Complete Bipartite Graphs
    Lortz R.
    Mengersen I.
    Results in Mathematics, 2002, 41 (1-2) : 140 - 149
  • [35] On graceful graphs: Pendant edge extensions of a family of complete bipartite and complete tripartite graphs
    Sethuraman, G
    Elumalai, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (09) : 1283 - 1296
  • [36] Subgraphs with Orthogonal [0, ki]1n-Factorizations in Graphs
    Zhou, Sizhong
    Zhang, Tao
    Xu, Zurun
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, 2017, 10156 : 362 - 370
  • [37] Unbalanced Star-Factorizations of Complete Bipartite Graphs II
    Nigel Martin
    Graphs and Combinatorics, 2007, 23 : 559 - 583
  • [38] Unbalanced star-factorizations of complete bipartite graphs II
    Martin, Nigel
    GRAPHS AND COMBINATORICS, 2007, 23 (05) : 559 - 583
  • [39] A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments
    Czyzowicz, J
    Kranakis, E
    Urrutia, J
    INFORMATION PROCESSING LETTERS, 1998, 66 (03) : 125 - 126
  • [40] Locally 2-arc-transitive complete bipartite graphs
    Fan, Wenwen
    Leemans, Dimitri
    Li, Cai Heng
    Pan, Jiangmin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2013, 120 (03) : 683 - 699