On extensions of Sobolev functions defined on regular subsets of metric measure spaces

被引:30
作者
Shvartsman, P. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
Sobolev space; metric space; regular set; linear extension operator; sharp maximal function;
D O I
10.1016/j.jat.2006.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the restrictions of first-order Sobolev functions to regular subsets of a homogeneous metric space and prove the existence of the corresponding linear extension operator. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:139 / 161
页数:23
相关论文
共 31 条
[1]  
[Anonymous], 1984, FUNCTION SPACES SUBS
[2]   On the existence of doubling measures with certain regularity properties [J].
Bylund, P ;
Gudayol, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (11) :3317-3327
[3]   ESTIMATES FOR SINGULAR INTEGRAL OPERATORS IN TERMS OF MAXIMAL FUNCTIONS [J].
CALDERON, AP .
STUDIA MATHEMATICA, 1972, 44 (06) :563-582
[4]  
CALDERON AP, 1978, STUD MATH, V62, P75
[5]   THE EXTENSION PROBLEM FOR CERTAIN FUNCTION-SPACES INVOLVING FRACTIONAL ORDERS OF DIFFERENTIABILITY [J].
CHRIST, M .
ARKIV FOR MATEMATIK, 1984, 22 (01) :63-81
[6]  
Coifman RR., 1971, Lect. Notes Math., DOI 10.1007/BFb0058946
[7]  
DEGUZMAN M, 1975, LECT OTES MATH, V481
[8]  
DEVORE RA, 1984, MEM AM MATH SOC, V47, P1
[9]  
Farkas W, 2001, MATH NACHR, V224, P75, DOI 10.1002/1522-2616(200104)224:1<75::AID-MANA75>3.0.CO
[10]  
2-N