Microstructural evolution and mechanical properties of ZrB2/6061Al nanocomposites processed by multi-pass friction stir processing

被引:44
作者
Zhang, Zhenya [1 ]
Yang, Rui [1 ]
Guo, Yuhang [2 ]
Chen, Gang [1 ]
Lei, Yucheng [1 ]
Cheng, Ye [2 ]
Yue, Yamei [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Mat Sci & Engn, Zhangjiagang 215600, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2017年 / 689卷
关键词
Metal matrix composites; Friction stir processing; Microstructure; Mechanical properties; IN-SITU; FLOW VISUALIZATION; ALUMINUM; COMPOSITES; STRENGTH; DISPERSION; AL; FABRICATION; PARTICLES; METALS;
D O I
10.1016/j.msea.2017.02.083
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Microstructural evolution during multi-pass friction stir processing (FSP) of the as-cast ZrB2/6061Al nanocomposite and corresponding mechanical properties were investigated. The initial sample was characterized by primarily micrometer-sized clusters of ZrB2 nanoparticles within the coarse dendrites. Multi-pass FSP successively broke these clusters, refined the matrix grains and finally produced a thoroughly homogeneous microstructure in the stirred zone (except for the upper layer). The process of cluster redistribution was found to be governed by material flow around the pin, wherein the actual stir or mixing driven particle dispersion only occurred in the thread grooves. Meanwhile, the pinning effect of ZrB2 nanodispersoids retarded grain growth following recrystallization and led to a further reduction in grain size. On the other hand, compared with the initial state, both the microhardness and tensile strengths of the FSPed composites were gradually enhanced with consecutive passes. These increases can be attributed to the combination effect of grain refinement and dislocation strengthening induced by uniform distribution of ZrB2 nanoparticles. Quantitative analysis in the 4 pass FSPed composite indicated that Orowan strengthening contributed the most to the yield strength.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 43 条
[1]   Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063 [J].
Al-Fadhalah, Khaled J. ;
Almazrouee, Abdulla I. ;
Aloraier, Abdulkareem S. .
MATERIALS & DESIGN, 2014, 53 :550-560
[2]   A unique timely moment for embedding intelligence in applications [J].
Alippi, Cesare .
CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2016, 1 (01) :1-3
[3]   Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing [J].
Avettand-Fenoel, M. -N. ;
Simar, A. ;
Shabadi, R. ;
Taillard, R. ;
de Meester, B. .
MATERIALS & DESIGN, 2014, 60 :343-357
[4]   Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables and on weld properties [J].
Brown, Rebecca ;
Tang, Wei ;
Reynolds, A. P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 513-14 :115-121
[5]   Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP) [J].
Du, Zhenglin ;
Tan, Ming Jen ;
Guo, Jun Feng ;
Bi, Guijun ;
Wei, Jun .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 667 :125-131
[6]   Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters [J].
Guo, J. F. ;
Chen, H. C. ;
Sun, C. N. ;
Bi, G. ;
Sun, Z. ;
Wei, J. .
MATERIALS & DESIGN, 2014, 56 :185-192
[7]   Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles [J].
Guo, Shu-Qi ;
Yang, Jenn-Ming ;
Tanaka, Hidehiko ;
Kagawa, Yutaka .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (14) :3033-3040
[8]   Influence of friction stir processing on the microstructure and mechanical properties of a compocast AA2024-Al2O3 nanocomposite [J].
Hoziefa, W. ;
Toschi, S. ;
Ahmed, M. M. Z. ;
Morri, Al. ;
Mahdy, A. A. ;
Seleman, M. M. El-Sayed ;
El-Mahallawi, I. ;
Ceschini, L. ;
Atlam, A. .
MATERIALS & DESIGN, 2016, 106 :273-284
[9]   Al-Al3Ti nanocomposites produced in situ by friction stir processing [J].
Hsu, C. J. ;
Chang, C. Y. ;
Kao, P. W. ;
Ho, N. J. ;
Chang, C. P. .
ACTA MATERIALIA, 2006, 54 (19) :5241-5249
[10]   Friction stir processing of Al/SiC composites fabricated by powder metallurgy [J].
Izadi, H. ;
Nolting, A. ;
Munro, C. ;
Bishop, D. P. ;
Plucknett, K. P. ;
Gerlich, A. P. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2013, 213 (11) :1900-1907