Flow control for lateral flow strips with centrifugal microfluidics

被引:16
作者
Kainz, Daniel M. [1 ]
Frueh, Susanna M. [1 ,2 ]
Hutzenlaub, Tobias [1 ,2 ]
Zengerle, Roland [1 ,2 ]
Paust, Nils [1 ,2 ]
机构
[1] Univ Freiburg, Lab MEMS Applicat, IMTEK Dept Microsyst Engn, Georges Koehler Allee 103, D-79110 Freiburg, Germany
[2] Hahn Schickard, Georges Koehler Allee 103, D-79110 Freiburg, Germany
关键词
RAPID DETECTION; ASSAY; PAPER; MICROCHANNELS; BINDING; BIOTIN; POINT;
D O I
10.1039/c9lc00308h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Lateral flow strips (LFSs) are widely used for clinical diagnostics. The restricted flow control of the current designs is one challenge to the development of quantitative and highly sensitive LFSs. Here, we present a flow control for LFSs using centrifugal microfluidics. In contrast to previously presented implementations of lateral flow membranes into centrifugal microfluidic cartridges, we direct the flow radially outwards through the membrane. We control the flow using only the centrifugal force, thus it is independent of membrane wetting properties and permeability. The flow rate can be decreased and increased, enabling control of incubation times for a wide variety of samples. We deduced a formula as a guideline for the integration of chromatographic membranes into centrifugal microfluidic disks to ensure that all the sample liquid flows through the membrane, hence safely avoiding bypass flow around the membrane. We verified the calculated operation conditions using different membranes, different flow rates, and different sample viscosities.
引用
收藏
页码:2718 / 2727
页数:10
相关论文
共 36 条
[1]   Pressure drop of fully-developed laminar flow in microchannels of arbitrary cross-section [J].
Bahrami, M. ;
Yovanovich, M. M. ;
Culham, J. R. .
JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2006, 128 (05) :1036-1044
[2]  
Bruus H., 2008, Theoretical Microfluidics
[3]   Microcantilever based disposable viscosity sensor for serum and blood plasma measurements [J].
Cakmak, Onur ;
Elbuken, Caglar ;
Ermek, Erhan ;
Mostafazadeh, Aref ;
Baris, Ibrahim ;
Alaca, B. Erdem ;
Kavakli, Ibrahim Halil ;
Urey, Hakan .
METHODS, 2013, 63 (03) :225-232
[4]   PROPERTIES OF STREPTAVIDIN BIOTIN-BINDING PROTEIN PRODUCED BY STREPTOMYCETES [J].
CHAIET, L ;
WOLF, FJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1964, 106 (1-3) :1-&
[5]   Monoclonal antibody-based lateral flow assay for detection of botulinum neurotoxin type A [J].
Chiao, Der-Jiang ;
Wey, Jiunn-Jye ;
Shyu, Rong-Hwa ;
Tang, Shiao-Shek .
HYBRIDOMA, 2008, 27 (01) :31-35
[6]   Colloidal gold-based immunochromatogrphic assay for detection of botulinum neurotoxin type B [J].
Chiao, DJ ;
Shyu, RH ;
Hu, CS ;
Chiang, HY ;
Tang, SS .
JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2004, 809 (01) :37-41
[7]   Development of an immunoassay-based lateral flow dipstick for the rapid detection of aflatoxin B1 in pig feed [J].
Delmulle, BS ;
De Saeger, SMDG ;
Sibanda, L ;
Barna-Vetro, I ;
Van Peteghem, CH .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (09) :3364-3368
[8]  
Dybbs A., 1984, Fundamentals of Transport Phenomena in Porous Media, P199, DOI 10.1007/978-94-009-6175-3_4
[9]   Microthermoforming of microfluidic substrates by soft lithography (μTSL): optimization using design of experiments [J].
Focke, M. ;
Kosse, D. ;
Al-Bamerni, D. ;
Lutz, S. ;
Mueller, C. ;
Reinecke, H. ;
Zengerle, R. ;
von Stetten, F. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2011, 21 (11)
[10]   Improving Lateral Flow Assay Performance Using Computational Modeling [J].
Gasperino, David ;
Baughman, Ted ;
Hsieh, Helen V. ;
Bell, David ;
Weigl, Bernhard H. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 11, 2018, 11 :219-244