Simultaneous Determination of Tuning and Calibration Parameters for Computer Experiments

被引:47
作者
Han, Gang [1 ]
Santner, Thomas J. [2 ]
Rawlinson, Jeremy J. [3 ]
机构
[1] Univ S Florida, Coll Med, H Lee Moffitt Canc Ctr & Res Inst, MRC BIOSTAT, Tampa, FL 33612 USA
[2] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
[3] Cornell Univ, Coll Vet Med, Dept Clin Sci, Clin Programs Ctr C2 527, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
Gaussian stochastic process model; Hierarchical Bayesian model; Kriging; MODELS; OUTPUT; VALIDATION;
D O I
10.1198/TECH.2009.08126
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Tuning and calibration are processes for improving the representativeness of a computer simulation code to a physical phenomenon. This article introduces a statistical methodology for simultaneously determining tuning and calibration parameters in settings where data are available from a computer code and the associated physical experiment. Tuning parameters are set by minimizing a discrepancy measure while the distribution of the calibration parameters are determined based on a hierarchical Bayesian model. The proposed Bayesian model views the output as a realization of a Gaussian stochastic process with hyperpriors. Draws from the resulting posterior distribution are obtained by the Markov chain Monte Carlo simulation. Our methodology is compared with an alternative approach in examples and is illustrated in a biomechanical engineering application. Supplemental materials, including the software and a user manual, are available online and can be requested from the first author.
引用
收藏
页码:464 / 474
页数:11
相关论文
共 22 条
[1]  
[Anonymous], 2003, QUAL ENG
[2]  
[Anonymous], 2000, Probability and Statistics series
[3]  
[Anonymous], 2008, ENG DESIGN VIA SURRO
[4]   Computer model validation with functional output [J].
Bayarri, M. J. ;
Berger, J. O. ;
Cafeo, J. ;
Garcia-Donato, G. ;
Liu, F. ;
Palomo, J. ;
Parthasarathy, R. J. ;
Paulo, R. ;
Sacks, J. ;
Walsh, D. .
ANNALS OF STATISTICS, 2007, 35 (05) :1874-1906
[5]   A framework for validation of computer models [J].
Bayarri, Maria J. ;
Berger, James O. ;
Paulo, Rui ;
Sacks, Jerry ;
Cafeo, John A. ;
Cavendish, James ;
Lin, Chin-Hsu ;
Tu, Jian .
TECHNOMETRICS, 2007, 49 (02) :138-154
[6]  
COX DD, 1996, 963 RIC U DEP STAT
[7]  
Craig P., 1996, BAYESIAN STAT, P69
[8]   Bayesian forecasting for complex systems using computer simulators [J].
Craig, PS ;
Goldstein, M ;
Rougier, JC ;
Seheult, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (454) :717-729
[9]  
Fang KT, 2006, CH CRC COMP SCI DATA, P3
[10]  
Gattiker J., 2005, USING GAUSSIAN PROCE