Nitrogen-Doped Carbon Nanotubes Supported by Macroporous Carbon as an Efficient Enzymatic Biosensing Platform for Glucose

被引:85
|
作者
Song, Yonghai [1 ]
Lu, Xingping [1 ]
Li, Yi [1 ]
Guo, Qiaohui [1 ]
Chen, Shuiliang [1 ]
Mao, Lanqun [2 ]
Hou, Haoqing [1 ]
Wang, Li [1 ]
机构
[1] Jiangxi Normal Univ, Coll Chem & Chem Engn, Key Lab Funct Small Organ Mol, Minist Educ,Key Lab Chem Biol, Nanchang 330022, Jiangxi Provinc, Peoples R China
[2] Chinese Acad Sci, Inst Chem, Key Lab Analyt Chem Living Biosyst, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; HIGH ELECTROCATALYTIC ACTIVITY; DIRECT ELECTROCHEMISTRY; HYDROGEN-PEROXIDE; MODIFIED ELECTRODE; OXIDASE; GRAPHENE; NANOSHEETS; COMPOSITE; ARRAYS;
D O I
10.1021/acs.analchem.5b03938
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Effective immobilization of enzymes/proteins on an electrode surface is very essential for biosensor development, but it still remains challenging because enzymes/proteins tend to form close-packed structures on the electrode surface. In this work, nitrogen-doped carbon nanotubes (NCNTs) supported by three-dimensional Kenaf Stem-derived porous carbon (3D-KSC) (denoted as 3D-KSC/NCNTs) nanocomposites were constructed as the supporting matrix to load glucose oxidase (GOD) for preparing integrated glucose biosensors. These NCNTs are vertically arrayed on the channel walls of the 3D-KSC via the chemical vapor deposition method, which could noticeably increase the effective surface area, mechanical stability, and active sites (originating from the doped nitrogen) of the nanocomposites. The integrated glucose biosensor exhibits some advantages over the traditional GOD electrodes in terms of the capability to promote the direct electron transfer of GOD, enhance the mechanical stability of the biosensor attributed to the strong interaction between NCNTs and GOD, and enlarge the specific surface area to efficiently load a large number of GODs. The as-prepared biosensor shows a good performance toward both oxygen reduction and glucose biosensing. This study essentially offers a novel approach for the development of biosensors with excellent analytical properties.
引用
收藏
页码:1371 / 1377
页数:7
相关论文
共 50 条
  • [41] Nitrogen-doped carbon nanotubes as catalysts for oxygen reduction reaction
    Xiong, Chun
    Wei, Zidong
    Hu, Baoshan
    Chen, Siguo
    Li, Li
    Guo, Lin
    Ding, Wei
    Liu, Xiao
    Ji, Weijia
    Wang, Xiaopei
    JOURNAL OF POWER SOURCES, 2012, 215 : 216 - 220
  • [42] Simplifying the creation of iron compound inserted, nitrogen-doped carbon nanotubes and its catalytic application
    Dong, Qing
    Wang, Hui
    Liu, Quanbing
    Ji, Shan
    Zhang, Yadong
    Tang, Cheng
    Wang, Xuyun
    Wang, Rongfang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 857
  • [43] Structural and morphological control of aligned nitrogen-doped carbon nanotubes
    Liu, Hao
    Zhang, Yong
    Li, Ruying
    Sun, Xueliang
    Desilets, Sylvain
    Abou-Rachid, Hakima
    Jaidann, Mounir
    Lussier, Louis-Simon
    CARBON, 2010, 48 (05) : 1498 - 1507
  • [44] Nickel Nanoparticles Supported on Nitrogen-Doped Carbon for Vanillin Detection
    Nie, Xue
    Deng, Peihong
    Zhang, Rui
    Tang, Zheng
    Wang, Haiyan
    Tang, Yougen
    ACS APPLIED NANO MATERIALS, 2020, 3 (12) : 11791 - 11800
  • [45] Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications
    Lee, Won Jun
    Maiti, Uday Narayan
    Lee, Ju Min
    Lim, Joonwon
    Han, Tae Hee
    Kim, Sang Ouk
    CHEMICAL COMMUNICATIONS, 2014, 50 (52) : 6818 - 6830
  • [46] Nitrogen-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium
    Yang, Mei
    Yan, Duangguang
    Chen, Hongbiao
    Gao, Yong
    Li, Huaming
    JOURNAL OF POWER SOURCES, 2015, 279 : 28 - 35
  • [47] Ultra dispersed Co supported on nitrogen-doped carbon: An efficient electrocatalyst for oxygen reduction reaction and Zn-air battery
    Zhang, Shuai
    Shang, Ningzhao
    Gao, Shutao
    Meng, Tao
    Wang, Zhi
    Gao, Yongjun
    Wang, Chun
    CHEMICAL ENGINEERING SCIENCE, 2021, 234
  • [48] Porous nitrogen-doped graphene/carbon nanotubes composite with an enhanced supercapacitor performance
    Lin, Ting-Ting
    Lai, Wen-Hui
    Lu, Qiu-Feng
    Yu, Yan
    ELECTROCHIMICA ACTA, 2015, 178 : 517 - 524
  • [49] Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction
    Dorjgotov, Altansukh
    Ok, Jinhee
    Jeon, YuKwon
    Yoon, Seong-Ho
    Shul, Yong Gun
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2013, 43 (04) : 387 - 397
  • [50] A simple synthesis of nitrogen-doped carbon micro- and nanotubes
    Chung, Hoon T.
    Zelenay, Piotr
    CHEMICAL COMMUNICATIONS, 2015, 51 (70) : 13546 - 13549