Lukasiewicz transform and its application to compression and reconstruction of digital images

被引:50
作者
Di Nola, A. [1 ]
Russo, C. [1 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
关键词
MV-algebras; many valued logic; fuzzy relation equations; residuated maps;
D O I
10.1016/j.ins.2006.09.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define the Lukasiewicz transform as a residuated map and a homomorphism between semimodules over the sem-ring reducts of an MV-algebra. Then we describe the "Lukasiewicz Transform Based" (LTB) algorithm for image processing, demonstrating its applicability. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1481 / 1498
页数:18
相关论文
共 18 条
[1]  
Bede B, 2010, IEEE INT CONF FUZZY
[2]  
Cignoli R. L, 2013, Algebraic foundations of many-valued reasoning, V7
[3]  
Cohen G, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P325
[4]  
Di Nola A, 2005, CONTEMP MATH, V377, P131
[5]   On normal forms in Lukasiewicz logic [J].
Di Nola, A ;
Lettieri, A .
ARCHIVE FOR MATHEMATICAL LOGIC, 2004, 43 (06) :795-823
[6]  
Di Nola A., 1989, FUZZY RELATION EQUAT
[7]   FAST ALGORITHMS FOR THE DISCRETE COSINE TRANSFORM [J].
FEIG, E ;
WINOGRAD, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (09) :2174-2193
[8]  
Golan J.S., 1992, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science
[9]   Fuzzy relational compression [J].
Hirota, K ;
Pedrycz, W .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 1999, 29 (03) :407-415
[10]  
Hirota K., 2004, IRAN J FUZZY SYST, V1, P33