A rank rigidity result for CAT(0) spaces with one-dimensional Tits boundaries

被引:2
|
作者
Ricks, Russell [1 ]
机构
[1] Binghamton Univ, Binghamton, NY 13902 USA
基金
美国国家科学基金会;
关键词
CAT(0); dimension; rank rigidity; CURVATURE;
D O I
10.1515/forum-2018-0133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the following rank rigidity result for proper CAT(0) spaces with one-dimensional Tits boundaries: Let Gamma be a group acting properly discontinuously, cocompactly, and by isometries on such a space X. If the Tits diameter of partial derivative X equals pi and Gamma does not act minimally on partial derivative X, then partial derivative X is a spherical building or a spherical join. If X is also geodesically complete, then X is a Euclidean building, higher rank symmetric space, or a nontrivial product. Much of the proof, which involves finding a Tits-closed convex building-like subset partial derivative X, does not require the Tits diameter to be pi, and we give an alternate condition that guarantees rigidity when this hypothesis is removed, which is that a certain invariant of the group action be even.
引用
收藏
页码:1317 / 1330
页数:14
相关论文
共 50 条
  • [41] AN EXISTENCE RESULT FOR ONE-DIMENSIONAL MAGNETO GASDYNAMICS
    SULEM, C
    SULEM, PL
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1980, 290 (10): : 207 - 210
  • [42] Fundamental groups of one-dimensional spaces
    Dorfer, Gerhard
    Thuswaldner, Joerg M.
    Winkler, Reinhard
    FUNDAMENTA MATHEMATICAE, 2013, 223 (02) : 137 - 169
  • [43] Existence result for a one-dimensional eikonal equation
    Boudjerada, Rachida
    El Hajj, Ahmad
    Moulay, Mohamed Said
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (02) : 133 - 137
  • [44] Möbius rigidity of invariant metrics in boundaries of symmetric spaces of rank-1
    I. D. Platis
    V. Schroeder
    Monatshefte für Mathematik, 2017, 183 : 357 - 373
  • [45] A uniqueness result for one-dimensional inverse scattering
    Bennewitz, C.
    Brown, B. M.
    Weikard, R.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) : 941 - 948
  • [46] Finite data rigidity for one-dimensional expanding maps
    O'Hare, Thomas Aloysius
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024,
  • [47] Linking in Systems with One-Dimensional Periodic Boundaries
    Millett, Kenneth C.
    Panagiotou, Eleni
    ALGEBRAIC MODELING OF TOPOLOGICAL AND COMPUTATIONAL STRUCTURES AND APPLICATIONS, 2017, 219 : 237 - 257
  • [48] One-dimensional quantum walks with absorbing boundaries
    Bach, E
    Coppersmith, S
    Goldschen, MP
    Joynt, R
    Watrous, J
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (04) : 562 - 592
  • [49] One-dimensional problems with free boundaries in ecology
    M. A. Berezovs'kyi
    Ukrainian Mathematical Journal, 1997, 49 (7) : 1114 - 1119
  • [50] At infinity of finite-dimensional CAT(0) spaces
    Pierre-Emmanuel Caprace
    Alexander Lytchak
    Mathematische Annalen, 2010, 346 : 1 - 21